
ETHERNET ROADMAP UPDATE

Scott Kipp

skipp@brocade.com

October 2014

DISCLAIMER

The views expressed in this presentation are the views of the presenter and not of the Ethernet Alliance.

Ethernet Roadmap Updates

- Since the August meeting, several standards are being worked on in IEEE 802.3
 - 25GbE Study Group met for the first time
 - 25GBASE-T Call for Interest (CFI) was announced
 - Next Generation Enterprise Access BASE-T PHY CFI announced
- If these pass, we could have 5 new speeds being developed simultaneously:
 - 1. 2.5GbE
 - 2. 5GbE
 - 3. 25GbE
 - 4. 50GbE
 - 5. 400GbE

>1B Ports Shipped in 2014!

Over 7 Billion Ethernet ports shipped in last decade!

	Ethernet Switch Ports ¹	Router Ports ²	Controllers and Adapters ³	PoE Devices ⁴	Access Ports ⁵	Total
2004	195M	1.2M	110M*	8.9M	62M	377M
2014	452M	1.8M	294M	98M	129M	974M

Probably another 100M ports on widgets, TVs, video games and other equipment in 2014.

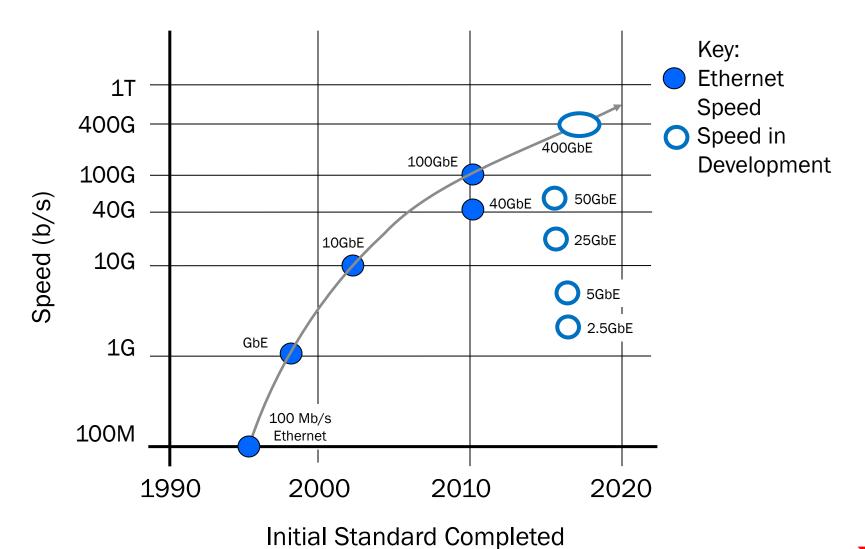
With Internet of things and vehicular applications expected to ship 100s of Millions of ports by the end of the decade, Ethernet will surpass 1.5B Ports/year by 2020.

- 1. Dell'Oro Ethernet Switch Layer 2+3 Report, July 2014
- 2. Dell'Oro Routers Report, July 2014
- 3. Dell'Oro Controller and Adapter Report, January 2012
- 4. Based on PoE switch ports from Dell'Oro Ethernet Switch Layer 2+3 Report, July 2014
- 5. Dell'Oro Access Five Year Forecast, July 2014
- * 2006 values since 2004 values weren't available

Ethernet Alliance Roadmap

Find more at:

www.ethernetalliance.org/subcommittees/roadmapping-subcommittee/


Name	Speed	Date Initial Standard Ratified
10Mb/s Ethernet	10 Mb/s	1983
100Mb/s Ethernet	100Mb/s	1995
Gigabit Ethernet	1 Gb/s	1998
10 Gigabit Ethernet	10 Gb/s	2002
25 Gigabit Ethernet	25Gb/s	2016 (est)*
40 Gigabit Ethernet	40 Gb/s	2010
100 Gigabit Ethernet	100 Gb/s	2010
400 Gigabit Ethernet	400 Gb/s	2017 (est.)**

^{*}Estimated on a 2-year standardization process that started with the CFI in July 2014

^{**}Estimated on a 4-year standardization process that started with the CFI in March 2013

Ethernet Speeds - Log

Why 2.5G to 50G?

- Installed base of CAT5E cabling driving 2.5GBASE-T
 - 10GBASE-T doesn't support 100m of CAT5E
- Installed base, new technology and low cost of SFP+ driving 25GbE
 - Serial lanes lower cost than parallel lanes of 40GbE
- 40GBASE-T looks very challenging, but 25GBASE-T looks easier
- 100GbE still prohibitively expensive for many users
- 1X40GbE SFP+ should deliver good bandwidth/\$ compared with 40GbE QSFP+ (4X10G)
- Can 50GbE SFP+ be deliver better bandwidth/\$ too?

Figure from Upcoming 2.5G CFI

Next Generation Enterprise Access BASE-T PHY

802.3 Ethernet and 802.11 Wireless LAN

BASE-T Power over Ethernet

Ethernet Switch

- Enterprise
- BASE-T ports
- Power over Ethernet

Cabling

- 100m Cat5e represents dominant installed base
- Higher grade cabling being deployed

Wireless Access Point

- Bridges 802.11 Wireless radio technology to 802.3 Ethernet technology
- Increasing Wireless radio capabilities (802.11n → 802.11ac) increases wired Ethernet BW to >> 1 Gb/s.
- Power/Cost sensitive
- >1Gb/s Ethernet need requires LAG or 10GBASE-T today
- PoE mandatory

IEEE 802.3 NGEBT CFI v7 2014-09-23

8

Why 25G Now?

- Best cost/Gbps soon
- Technology is ready
 - ASICs are port limited, so need more Gb/s/port

640Gb/s

64 Ports of 10G

5X

3.2 Tb/s

128 Ports of 25G

More

64 10GbE port ASIC enables 48 SFP+ and 4 QSFP+ 640Gb/s of Throughput

128 25GbE port ASIC enables32 QSFP+3.2 Tb/s of Throughput

5X The Calories

McDonald's Hamburger -250 calories

Burger King's
Triple Whopper with
Cheese
-1250 calories

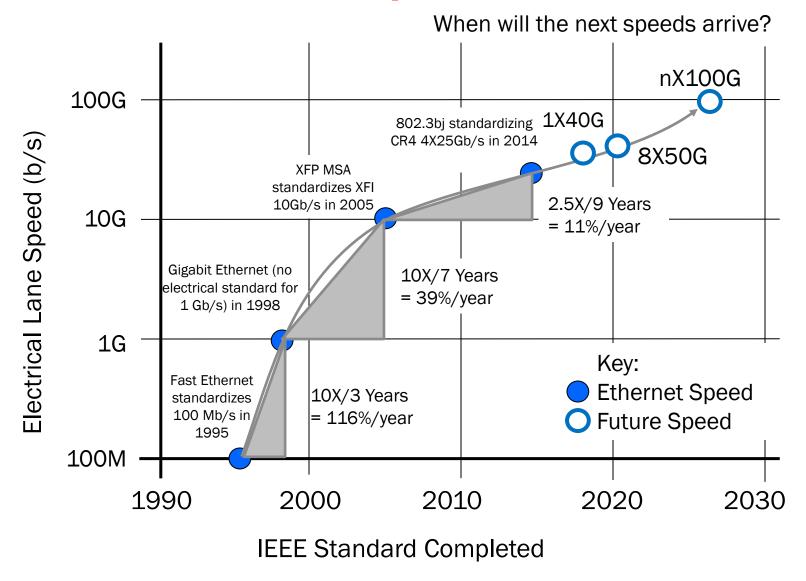
1000X The Storage

2003 512MB

2014 512GB!

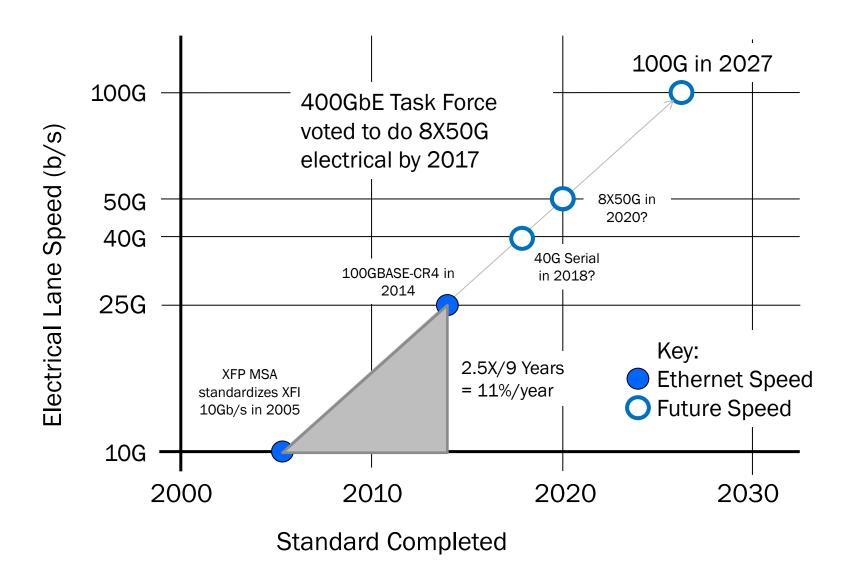
How Long are Bits and Frames?

A 1GFC Frame is about 4km long and a 1GFC bit is 7.41" long A 32GFC Frame is about 125 m and a 32GFC bit is about $\frac{1}{4}$ " long

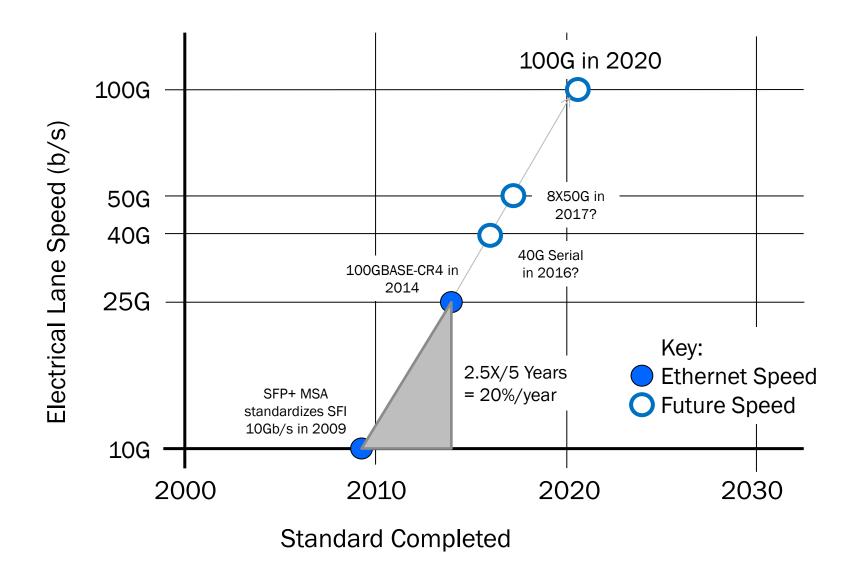

			speed of light			
	Data Rate	Bit time	in glass	bit length	bit length	frame length
	bits/second	picoS/bit	m/s	m/bit	inches/bit	m/frame
1GFC	1,062,500,000	941	200,000,000	0.188	7.41	3975.53
2GFC	2,125,000,000	471	200,000,000	0.094	3.71	1987.76
4GFC	4,250,000,000	235	200,000,000	0.047	1.85	993.88
8GFC	8,500,000,000	118	200,000,000	0.024	0.93	496.94
16GFC	14,025,000,000	71	200,000,000	0.014	0.56	248.47
32GFC	28,050,000,000	36	200,000,000	0.007	0.28	124.24
	My Master's					
1 00fs	Thesis at LLNL	0.1	300,000,000	0.000030	0.001181	

10/10/2014 12

25GbE Standards

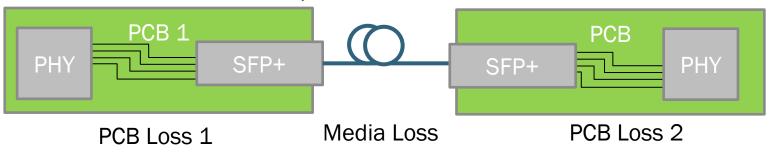

- Current 25GbE Study Group has following objectives:
 - Backplanes like 802.3bj
 - 3m of Twinax
 - 5m of Twinax
 - 100m like 100GBASE-SR4
- 25GBASE-T CFI coming next month
 - Don't know what distance or cabling yet?
 - 40GBASE-T defined for 30m over CAT8 in letter ballot

Electrical Interface Speeds



11% CAGR is Fairly Slow

20% CAGR is Great!

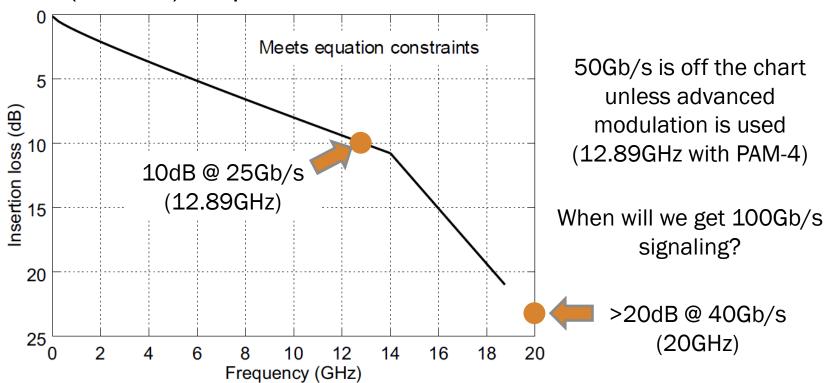


How far will 40G Serial go?

Bandwidth Length Product depends on Media

Speed	Reach with PCB Loss =10dB	MMF Reach (OM3)	BASE-T Cable Distance
1G	20-36"	550m	100m on CAT5
10G	10-15"	300m	100m on CAT6A
25G	4-6"	100m	??
40G	??	70m?	30m on CAT8
50G	???	50m?	??

One example of an Ethernet Link



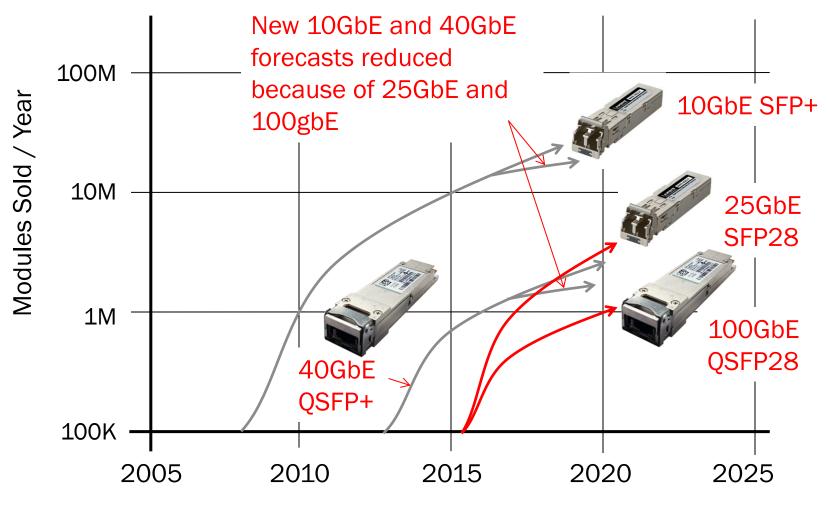
It's Only Getting Harder

Higher speeds equal higher loss and power or shorter distances

CAUI-4 (4X25G) Chip to Module Insertion Loss

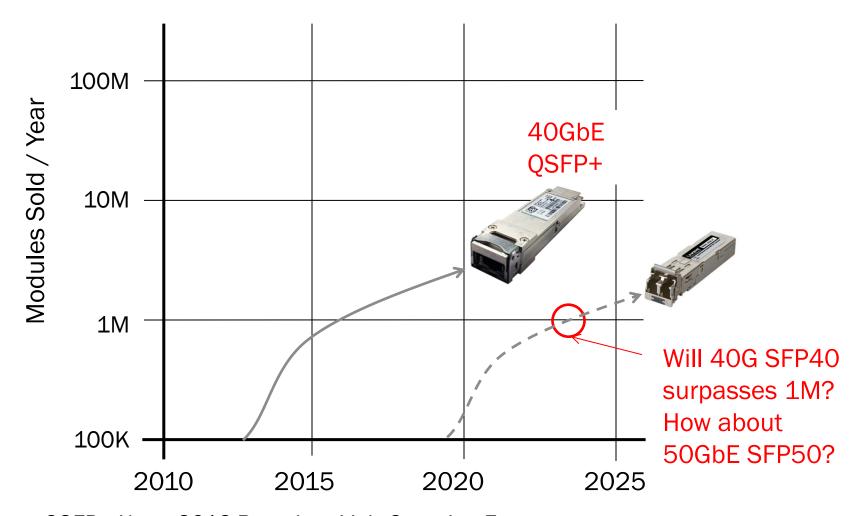
Where's the Debate?

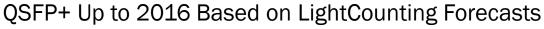
- Should we standardize 40GbE Serial in SFP+?
- Should we standardize 50GbE Serial in SFP+?
- Should we standardize 100GbE Serial in SFP+?
 - 4X100GbE QSFP112 should combine to 400GbE
- 400GbE has many options:
 - Should 8X50G Electrical Interface be NRZ or PAM-4
 - Should optics be 8X50G or 4X100G λ and what encoding (NRZ, PAM-4, DMT, CAP, QAM)?
- Many BASE-T questions to be discussed later...

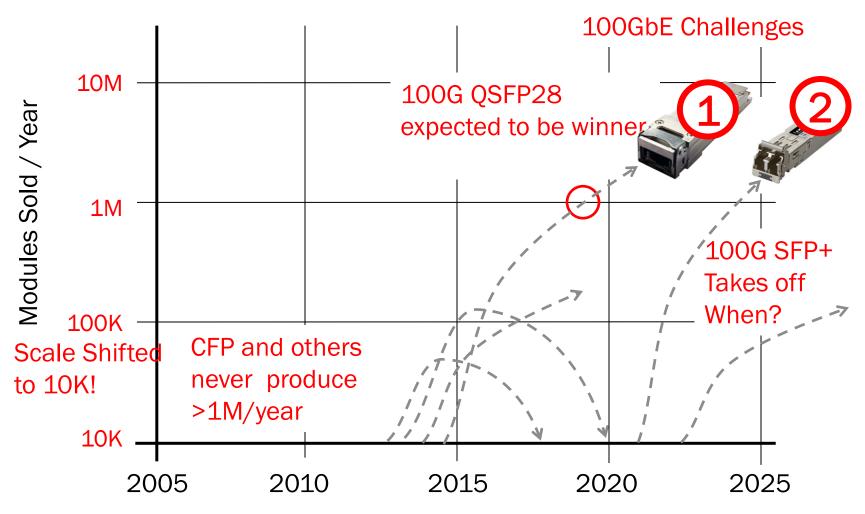

10G Recap - SFP+ and QSFP+ Win!

Before 25GbE and 50GbE Came Along 100M Modules Sold / Year 2015 SFP+ surpasses 10M! 10M 2010 SFP+ Becomes the Clear Winner 1M XFP and Others never reach 2016 40G critical mass QSFP+ >1M 100K 2005 2000 2010 2015 2020

Based on LightCounting Forecasts


How does 25GbE Affect this?



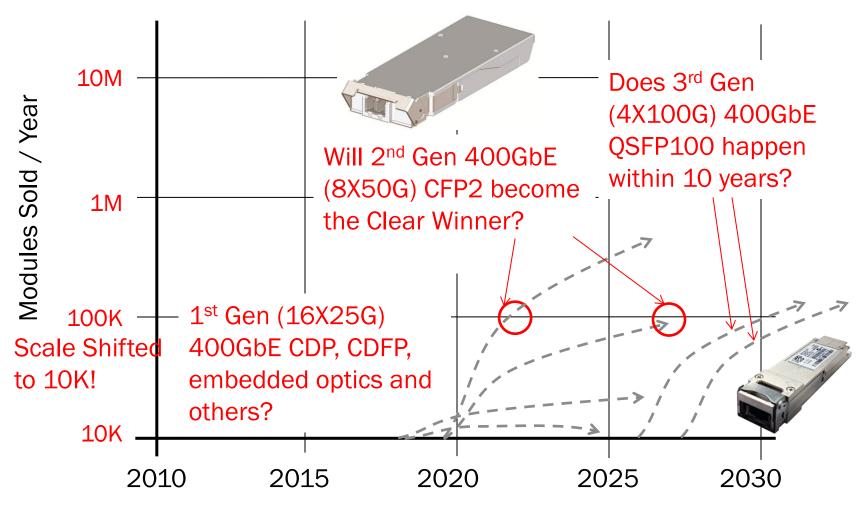

40G - Will SFP+ win?

100G - QSFP28 then SFP+?

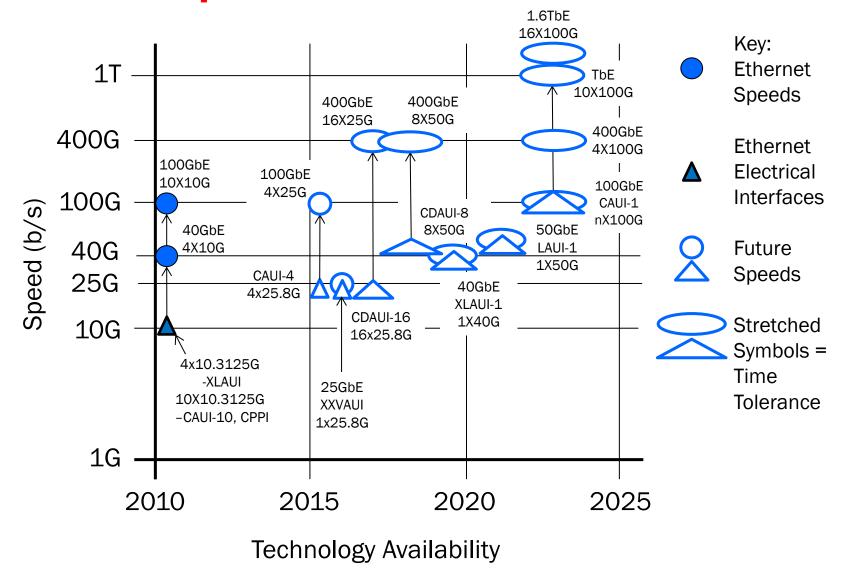
Challenging the Industry

 The Ethernet Alliance has created two challenges related to 100GbE:

1. The Holy Cup of 100GbE Lambda


See Details at: http://www.ethernetalliance.org/subcommitt ees/roadmap-subcommittee/

2. The Holy Grail of 100GbE SFP+


400G - Still Developing

Ethernet Speeds 2010-2025

Where's the Debate?

- What modulation should be used for 50Gb/s?
 - NRZ and PAM-4 both could work, but which will dominate?
- Where should the 50G Electrical be used?
 - 2nd Gen 400GbE (8X50G) is a given
 - Should we do 3rd Gen 100GbE (2X50G)?
 - Should we have 2nd Gen 50GbE (1X50G)?
 - 1st Gen 50GbE (2X25GbE) is in 25G Ethernet Consortium
- When will 100G Optics be used?
 - 4X100GbE being debated in 400GbE (802.3bs) now
 - 100GbE QSFP28 Single Lambda not far away
 - 100GbE SFP+ is out a ways

The Rate Debate is Next Week!

- Where: Santa Clara Convention Center
- When: Next Thursday, October 16th
- http://www.ethernetalliance.org/the-rate-debate/

Morning Agenda

Time	Topic	Speaker(s)		
9:10am	Ethernet Alliance Roadmap Intro	Scott Kipp, Ethernet Alliance President (Brocade)		
9:30am	Networking Data Rates inside the Data Centers	Alan Weckel, Dell'Oro Group		
9:50am	Server Diversity: Why One Speed Is No Longer Enough	Dave Chalupsky, Intel		
10:10am	Implications of the Next Signaling Rate on Ethernet Speeds	Kapil Shrikhande, Dell		
10:30am	Lane Rates	Rob Stone, Broadcom		
10:50am	Break			
11:05am	Discussion on Sessions	Scott Kipp, Ethernet Alliance President (Brocade)		
11:35am	Guest Speaker	Gavin Cato, Dell		

Afternoon Agenda

Time	Topic	Speaker(s)		
1:00pm	Data Center Fabrics	Thomas Scheibe, Cisco		
1:25pm	Introduction of Session	Scott Kipp, Ethernet Alliance		
	introduction of Session	President (Brocade)		
1-20	Faster – 56Gb/s Standardization	David Stauffer, Kandou Bus		
1:30pm	Efforts at the OIF	Nathan Tracy, TE Connectivity		
1.50nm	The Impact of Ethernet Rates on	Mitch Fields, Avago		
1:50pm	Optics			
2:10pm	50Gb/s: The Next Unifying Per	Chris Cole, Finisar		
Z. 10pm	Lane Rate			
2:30pm	Discussion on Session	Scott Kipp, Ethernet Alliance		
Z.30pm	Discussion on Session	President (Brocade)		
2:55pm	Break			
3:15pm	BASE-T Panel: 2.5 to 25G	Dave Chalupsky, Intel		
4:00pm	Flexible Ethernet Rates for Router	Stephen Trowbridge, Alcatel Lucent		
	to Transport			
5:00pm	Wrap-up	John D'Ambrosia, Dell		
5:30pm	Networking Reception	All		

10/10/2014 30

THANK YOU