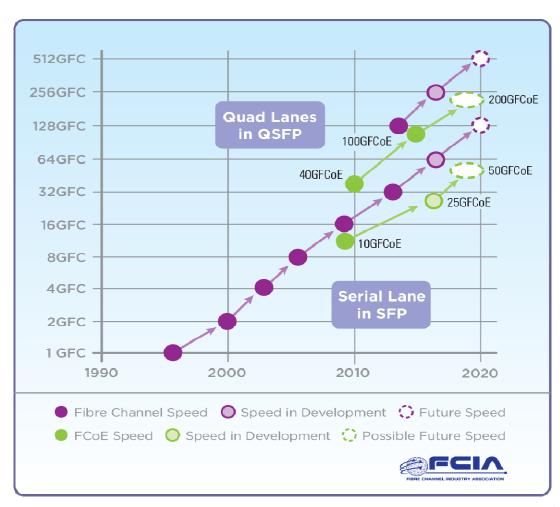
BROCADE[™]

Storage Networking Roadmaps

Scott Kipp

Director of Engineering

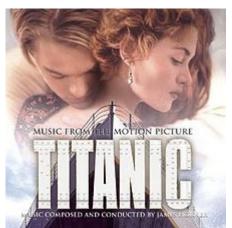

Chair of Fibre Channel and Ethernet Roadmap Subcommittees

Disclaimer

• Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance.

Roadmaps

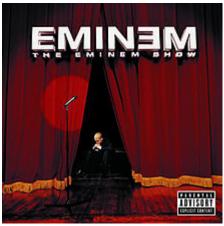
- Industry has adopted doubling down on speeds
- Innovation coming from more directions
- It's getting harder to double down each time
- www.fibrechannel.org/roadmap/
- www.ethernetalliance.org/roadmap/



Back to the 90s

- Gigabit Fibre Channel was named after the line rate with 8B/10B encoding of 100MB/s
 - -100MB/s = 800Mb/s
 - -800Mb/s/8*10 = 1Gb/s
- Gigabit Ethernet leveraged 1GFC standards

What was the Top Selling Albums/Artist of the Year according to Billboard Magazine?


1GFC 1GbE

1996 1998

The New Millenium

- Fibre Channel doubles its speed
- Optical Speed Negotiation seems an insurmountable obstacle
- Lots of hype about 10G changing the world

2GFC

2000

2002

The Early Naughts

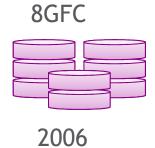

- 10GFC standardized
- Fibre Channel doubles again to 4GFC
- 10GbE has 300 pin MSA, XENPAK and X2 modules

2GFC SFP+

58,000 10GbE Ports Ship 2.5M 2GFC Ports Ship -Dell'Oro - 2004

10GFC

2003

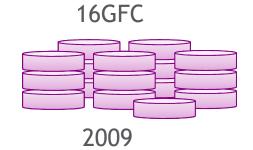

2004

The Mid Naughts

- Fibre Channel doubles again to 8GFC
- 10GbE XFP standardized
- 10GFC released with little sales

2006 294,000 10GbE Ports Ship 5M 4GFC Ports Ship -Dell'Oro

The Late Naughts


- Fibre Channel doubles again to 16GFC
- 10GbE SFP+ standardized

2009 2.75M 10GbE Ports Ship 2.3M 4GFC + 3.5M 8GFC Ports Ship -Dell'Oro

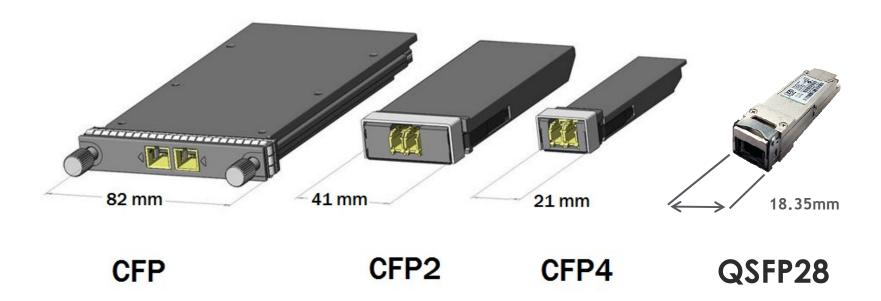
The Tens

- Ethernet jumps to 40 and 100GbE
- Fibre Channel doubles again to 32GFC
- 40GbE QSFP+ standardized

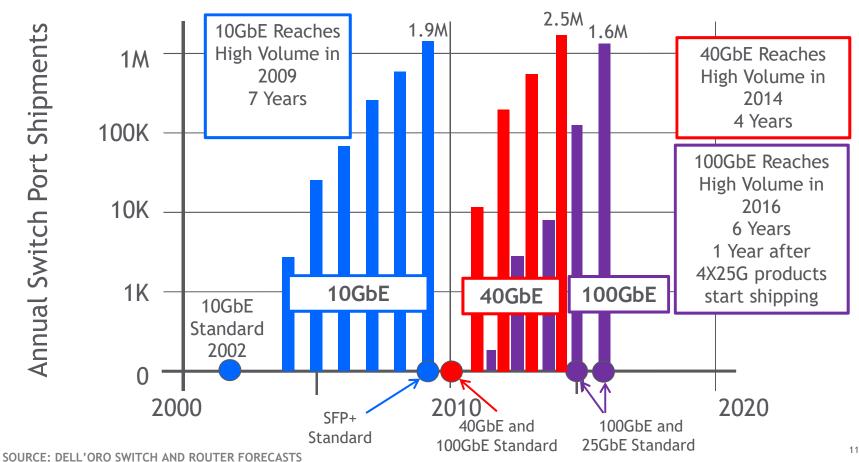
See next page

100GbE Modules

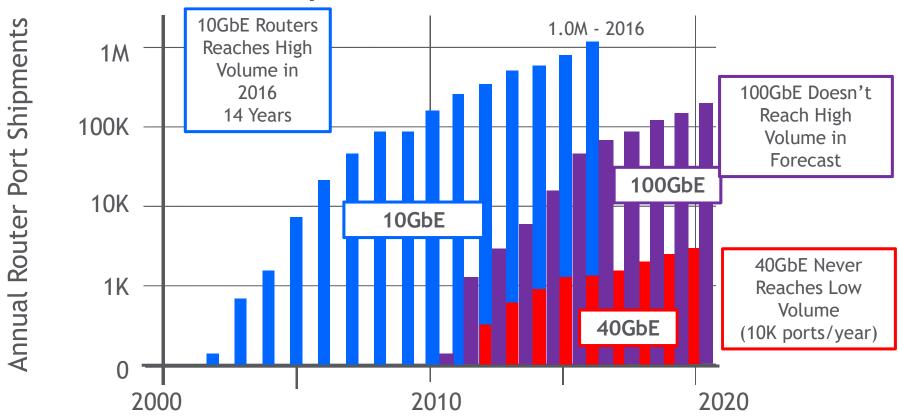
40 and 100GbE



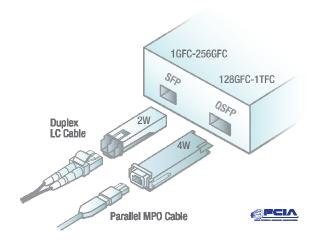
2010

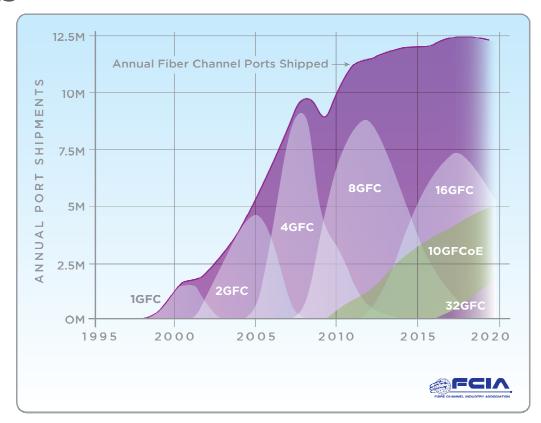

2013

100GbE Form Factors


Router Market Requires Higher Speeds Quickly

10G to 100G Transitions


Router Port Shipments



8

Fibre Channel Ports

- This is Fibre Channel switches and HBAs as well as FCoE
- Fibre Channel stayed focused on 2 modules

The Teens

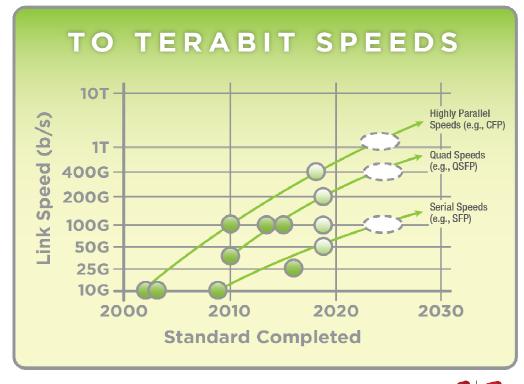
- Fibre Channel quadruples to 128GFC
- 100GbE QSFP+ standardized

See next page

100GbE Modules

128GFC

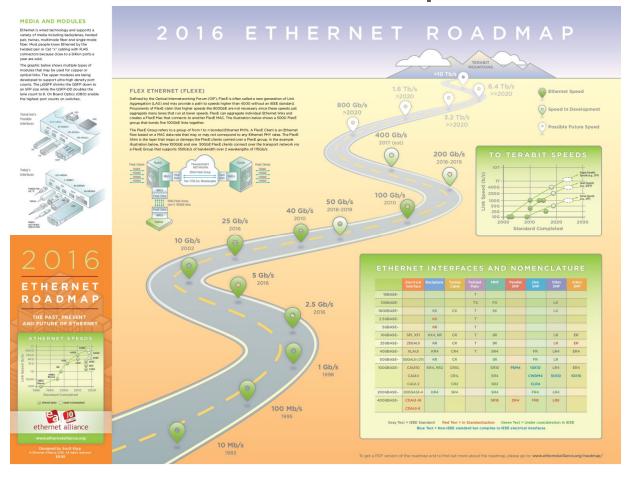
2014

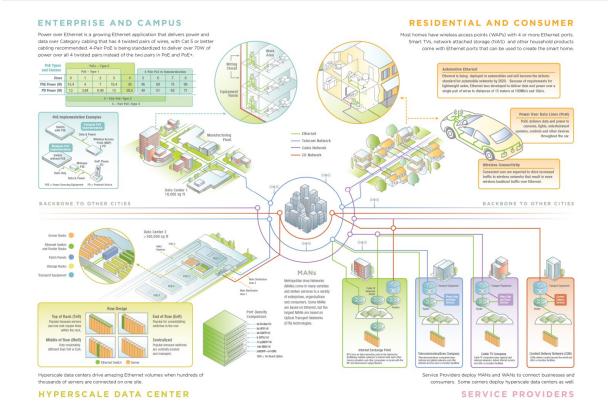

25GbE

2016

To Terabit Speeds

- Serial speeds in SFP are great for servers and switches
- Quad speeds in QSFP are good for networking
- Highly parallel speeds are needed for routers





The 2016 Ethernet Roadmap - Front

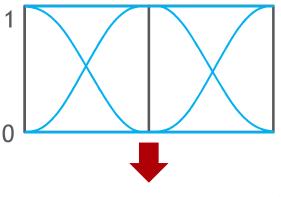
The 2016 Ethernet Roadmap - Back

ETHERNET ECOSYSYTEM

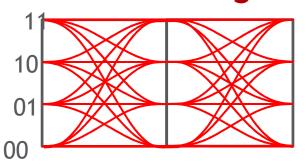
The New Nomenclature Chart

ETHERNET INTERFACES AND NOMENCLATURE

	Electrical Interface	Backplane	Twinax Cable	Twisted Pairs	MMF	Parallel SMF	2km SMF	10km SMF	40km SMF
10BASE-				Т					
100BASE-				TX	FX			LX	
1000BASE-		KX	CX	Т	SX			LX	
2.5GBASE-		кх		Т					
5GBASE-		KR		Т					
10GBASE-	SFI, XFI	KX4, KR	CR	Т	SR			LR	ER
25GBASE-	25GAUI	KR	CR	Т	SR			LR	ER
40GBASE-	XLAUI	KR4	CR4	Т	SR4		FR	LR4	ER4
50GBASE-	50GAUI (-2?)	KR	CR		SR		FR	LR	
100GBASE-	CAUI10	KR4, KR2	CR10,		SR10	PSM4	10X10	LR4	ER4
	CAUI4		CR4,		SR4		CWDM4	10X10	10X10
	CAUI-2		CR2		SR2		CLR4		
200GBASE-	200GAUI-4	KR4	SR4		SR4		FR4	LR4	
400GBASE-	CDAUI-16				SR16	DR4	FR8	LR8	
	CDAUI-8								

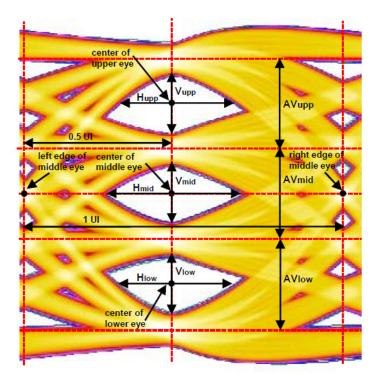

Gray Text = IEEE Standard Red Text = In Standardization Green Text = Under consideration in IEEE

Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces


50-56G Developments

- Ethernet and Fibre Channel are basically doubling the data rate by converting from PAM-2 (1-bit NRZ with 0 or 1) to PAM-4 (2-bit - 00, 01, 10 or 11)
- OFC had many 50G PAM-4 demonstrations
- Many open technical issues as shown on next slide

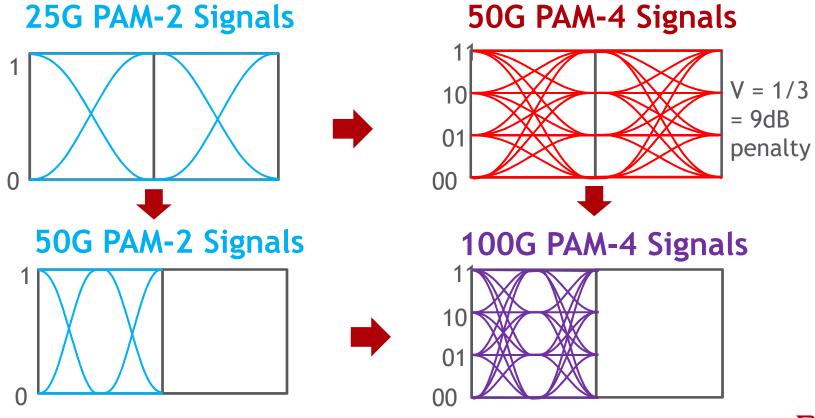
25G PAM-2 Signals



50G PAM-4 Signals

50-56G Signaling Challenges

- Which FEC to use
 - KR4 RS-FEC for compatibility with 25GbE and 32GFC
 - KP4FEC for more coding gain and compatibility with CDAUI-8
 - FEC latency
- Speed Negotiation with PAM-4
- Allocation of budgets to electrical interfaces and optical modules
- Testing methodology of PAM-4
- PAM-4 signaling in FS-5



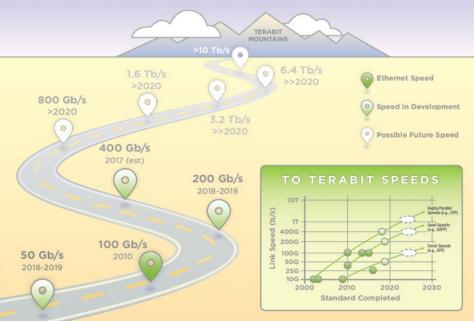
FEC Implications

RS(544,514) FEC Makes ASICs Significantly Larger

Speed	KR-FEC	RS(528,514)	RS(544,514)	Serial Link Rate (Gbps)
16GFC	✓			14.025
32GFC		\checkmark		28.05
400GbE (50G lanes)			✓	53.125
64GFC		\checkmark		56.1
64GFC			✓	57.8

How do we get to 100G Lanes?

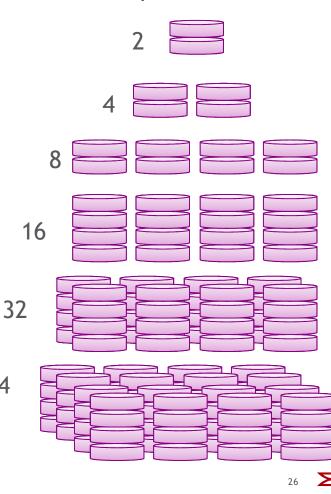
Holy Grail of the 100GbE SFP+


- The first company to publicly demonstrate a 100GbE SFP+ under 1.5W will win the Holy Grail
- Find out more information at:

http://www.ethernetalliance.org/wpcontent/uploads/2013/04/Ethernet-Alliance-100GbE-Challenges-09-16-14.pdf

TFC and TbE

Abbreviated Fibre Channel Roadmap


http://fibrechannel.org/fc-roadmaps/

Product Naming	Throughput (Mbytes/s)	Line Rate (Gbaud)	T11 Specification Technically Complete (Year)*	Market Availability (Year)*
8GFC	1,600	8.5	2006	2008
16GFC	3,200	14.025	2009	2011
32GFC	6,400	28.05	2013	2016
128GFC	25,600	4X28.05	2014	2016
64GFC	12,800	56.1	2017	2019
256GFC	51,200	4X56.1	2017	2019
128GFC	25,600	TBD	2020	Market Demand
256GFC	51,200	TBD	2023	Market Demand
512GFC	102,400	TBD	2026	Market Demand
1TFC	204,800	TBD	2029	Market Demand

Doubling Down to Infinity

- Can we keep doubling down and continue winning?
- Will we reach a physical barrier where parallel is better than serial?
 - Processors have...
- Don't bet against innovation!

BROCADE[™]

Thank you!