Introducing FC-NVMe

The Best of Both Worlds

Craig Carlson, Chair, T11 FC-NVMe Committee, Cavium
J Metz, Secretary, FCIA Board of Directors, Cisco
Agenda

- Introduction
- Crash Course on How Fibre Channel Works
- Crash Course on NVMe and NVMe over Fabrics (NVMe-oF) Work
- How FC-NVMe Works
- Why Use FC-NVMe?
- Summary
What This Presentation Is

• A reminder of how Fibre Channel works
• A reminder of how NVMe over Fabrics work
• A high-level overview of Fibre Channel and NVMe, especially how they work together
What This Presentation Is Not

- A technical deep-dive on either Fibre Channel or NVMe over Fabrics
- Comprehensive (no boiling the ocean)
- A comparison between FC and other NVMe over Fabrics methods
Crash Course on Fibre Channel
What is Fibre Channel?

• A network purpose-built for storage
• A physical connection between a host and its storage
• A logical (protocol) connection between a host and its storage
Design Requirements

• Fibre Channel Storage Area Network (SAN)
 – Goal: Provide one-to-one connectivity
 – Transport and Services are on same layer in same devices
 – Well-defined end-device relationships (initiators and targets)
 – Does not tolerate packet drop – requires lossless transport
 – Only north-south traffic, east-west traffic mostly irrelevant

• Network designs optimized for Scale and Availability
 – High availability of network services provided through dual fabric architecture
 – Edge/Core vs. Edge/Core/Edge
 – Service deployment
• Terminology that covers components or parts of the system
• Terminology that talks about the end-to-end system
For FC the adapter which sits in a Host is called an HBA (Host Bus Adapter) – Equivalent to a NIC for Ethernet

Where protocols such as NVMe or SCSI get encapsulated into a Fibre Channel Frame
Design Elements

- Fabric intelligence is most often kept in the switch
- The Name Server
 - Repository of information regarding the components that make up the Fibre Channel network
 - Name Server is implemented in the Fabric as a distributed redundant database
 - Components, like HBAs, can register their characteristics with the Name Server
 - Name server knows *everything* that goes on in the Fabric
The Fibre Channel Protocol

- Fibre Channel typically uses an Unacknowledged Datagram Service
 - Known as “Class 3”
 - Defined as a reliable datagram (connectionless) service
 - A class 3 frame will not be dropped unless an error occurs (i.e., bit error, or other unrecoverable error)
Fibre Channel data transfer has 3 fundamental constructs:

- Frames – A “packet” of data
- Sequences – A set of frames for larger data transfers
- Exchanges – An associated set of commands and responses that make up a single command
Each unit of transmission is called a “frame”
- A frame can be up to 2112 bytes
- Each frame consists of a FC Header, payload, and CRC
Sequences

• Multiple frames can be bundled into a “Sequence”
 • A Sequence can be used to transfer a large amounts of data
 • possibly up to multi-megabytes (instead of 2112 bytes for a single frame)
An interaction between two Fibre Channel ports is termed an “Exchange”
- Many protocols (including SCSI and FC-NVMe) use an Exchange as a single command/response
- Individual frames within the same Exchange are guaranteed to be delivered in-order
- Individual exchanges may take different routes through the fabric
 - This allows the Fabric to make efficient use of multiple paths between individual Fabric switches
Discovery in a FC Network

- Handled through the FC Name Server
- Many port attributes are automatically registered to the FC Name Server (e.g., Node WWN, Port WWN, Protocol types, etc.)
 - Every Fibre Channel port and node has a hard-coded address called *World Wide Name* (WWN)
 - WWNN uniquely identify devices
 - WWPN uniquely identify each port in a device
Zones/Zoning

- Zones provide added security and allow sharing of device ports
- Zoning allows a FC Fabric to control which ports get to see each other
 - Zones can change frequently (e.g. backup)
- Zoning is implemented by the switches in a Fabric
 - Similar to ACLs in Ethernet switches
 - Central point of authority
 - Zoning information is distributed to all switches in the fabric
 - Thus all switches have the same zoning configuration
- Standardized
Fibre Channel Protocol

- Fibre Channel has layers, just like OSI and TCP
- At the top level is the Fibre Channel Protocol (FCP)
 - Integrates with upper layer protocols, such as SCSI, FICON, and NVMe

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0</td>
<td>Physical Interface</td>
</tr>
<tr>
<td>FC-1</td>
<td>Byte Encoding</td>
</tr>
<tr>
<td>FC-2</td>
<td>Framing and Flow Control</td>
</tr>
<tr>
<td>FC-3</td>
<td>Common Services</td>
</tr>
<tr>
<td>FC-4</td>
<td>Upper Layer Protocol Interface</td>
</tr>
</tbody>
</table>
What's the difference between FCP and “FCP”?
- FCP is a data transfer protocol that carries other upper-level transport protocols (e.g., FICON, SCSI, NVMe)
- Historically FCP meant SCSI FCP, but other protocols exist now
- NVMe “hooks” into FCP
 - Seamless transport of NVMe traffic
 - Allows high performance HBA’s to work with FC-NVMe
Crash Course on NVMe
What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

- **Non-Volatile Memory Express (NVMe)**
 - Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
 - Low latency and high IOPS direct-attached NVM storage
What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

• **Non-Volatile Memory Express (NVMe)**
 - Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
 - Low latency and high IOPS direct-attached NVM storage

• **NVMe over Fabrics (NVMe-oF)**
 - Built on common NVMe architecture with additional definitions to support message-based NVMe operations
 - Standardization of NVMe over a range of Fabric types
 - Initial fabrics; RDMA (RoCE, iWARP, InfiniBand™) and Fibre Channel
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

• In-box PCIe NVMe drivers in all major operating systems
• NVMe-oF will require specific drivers
 – FC-NVMe drivers will be provided by Fibre Channel vendors like always
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Contains the architectural elements for NVMe targets
 - NVMe Controller
 - NVM Media
 - NVMe Namespaces
 - Interfaces
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- NVMe Command Processing
- Access to NVMe Namespaces
 - Namespace ID (NSID) associates a Controller to Namespaces(s)

![NVMe Basics Diagram](image-url)
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Defines the mapping of NVM Media to a formatted LBA range
 - NVMe Subsystem may have multiple Namespaces

NVMe Basics

- NVMe Basics
 - Defines the mapping of NVM Media to a formatted LBA range
 - NVMe Subsystem may have multiple Namespaces

NVMe Namespace
- # of LBAs
- LBA Format/Size
- Global Unique Identifier
- Misc. metadata settings

NVMe Subsystem

- Media Types
 - Flash
 - NG_NVM
 - DRAM

- Media Form
 - Chips
 - SSD
 - NVDIMM
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- I/O Submission and Completion Queue Pairs are aligned to Host CPU Cores
 - Independent per queue operations
 - Transport type-dependent interfaces facilitate the queue operations and NVMe Command Data transfers
NVMe over Fabrics (NVMe-oF)

- NVMe is a Memory-Mapped, PCIe Model
- Fabrics is a message-based transport; no shared memory
- Fibre Channel uses capsules for both Data and Commands
Extending Queue-Pairs over a Network

- Each Host/Controller Pair have an independent set of NVMe queues
- Queue Pairs scale across Fabric
 - Maintain consistency to multiple Subsystems
 - Each controller provides a separate set of queues, versus other models where single set of queues is used for multiple controllers
FC-NVMe
Take away from this section?

- **Most important part**
 - High level understanding of how FC-NVMe works
 - Understand how FCP can be used to map NVMe to Fibre Channel

- **Next Section**
 - Why use FC-NVMe?
FC-NVM_e

- **Goals**
 - Comply with NVMe over Fabrics Spec
 - High performance/low latency
 - Use existing HBA and switch hardware
 - Don’t want to require new ASICs to be spun to support FC-NVM_e
 - Fit into the existing FC infrastructure as much as possible, with very little real-time software management
 - Pass NVMe SQE and CQE entries with no or little interaction from the FC layer
 - Maintain Fibre Channel metaphor for transportability
 - Name Server
 - Zoning
 - Management
The Goal of High Performance/Low Latency

- Means that FC–NVMe needs to use an existing hardware accelerated data transfer protocol
- FC does not have an RDMA protocol so FC-NVMe uses FCP as the data transfer protocol
 - Currently both SCSI and FC-SB (FICON) use FCP for data transfers
 - FCP is deployed as hardware accelerated in most (if not all) HBAs
- Like FC, FCP is a connectionless protocol
 - Any FCP based protocols provide a way of creating a “connection”, or association between participating ports
FCP Mapping

- The NVMe Command/Response capsules, and for some commands, data transfer, are directly mapped into FCP Information Units (IUs)

- A NVMe I/O operation is directly mapped to a Fibre Channel Exchange
FC-NVMe Information Units (IUs)

1. NVMe Submission Queue Entry (SQE) is mapped to a FCP Command IU

2. Data to a FCP Data IU

3. NVMe Completion Queue Entry (CQE) to a FCP Response IU
Transactions for a particular I/O Operation are bundled into an FC Exchange.

- **Exchange (Read I/O Operation):**
 - Read Command
 - Data
 - Response

- **Exchange (Write I/O Operation):**
 - Write Command
 - Data
 - Response
Zero Copy

- Zero-copy
 - Allows data to be sent to user application with minimal copies
- RDMA is a semantic which encourages more efficient data handling, but you don’t need it to get efficiency
- FC has had zero-copy years before there was RDMA
 - Data is DMA’d straight from HBA to buffers passed to user
- Difference between RDMA and FC is the APIs
 - RDMA does a lot more to enforce a zero-copy mechanism, but it is not required to use RDMA to get zero-copy
FCP Transactions

- FCP Transactions look similar to RDMA
 - For Read
 - FCP_DATA from Target
 - For Write
 - Transfer Ready and then DATA to Target
NVMe-oF Protocol Transactions

- NVMe-oF over RDMA protocol transactions
 - RDMA Write
 - RDMA Read with RDMA Read Response
FC-NVMe Discovery

- FC-NVMe Discovery uses both
 - FC Name Server to identify FC-NVMe ports
 - NVMe Discovery Service to disclose NVMe Subsystem information for those ports
- This dual approach allows each component to manage the area it knows about
 - FC Name Server knows all the ports on the fabric and the type(s) of protocols they support
 - NVMe Discovery Service knows all the particulars about NVMe Subsystems
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to FC Name Server
FC-NVMe Discovery Example

- FC Name Server points to NVMe Discovery Controller(s)
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to NVMe Discovery Controller(s)
FC-NVMe Discovery Example

- NVMe Discovery Controller(s) identify available NVMe Subsystems
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to NVMe Subsystem(s) to begin data transfers
Zoning and Management

- Of course, FC-NVMe also works with
 - FC Zoning
 - FC Management Server and other FC Services
Multiple FC-NVMe Demonstrations were presented at the 2016 Flash Memory Summit

- Multiple Vendors attending
- Live FC-NVMe traffic between an FC-NVMe Host/Initiator to a FC-NVMe Subsystem/Target
Why Use FC-NVMe?
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
2) Run NVMe and SCSI Side-by-Side
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
2) Run NVMe and SCSI Side-by-Side
3) Robust and battle-hardened discovery and name service
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
2) Run NVMe and SCSI Side-by-Side
3) Robust and battle-hardened discovery and name service
4) Zoning and Security
Top 5 Reasons FC-NVMe Might Be The Right Choice

• 1) Dedicated Storage Network
• 2) Run NVMe and SCSI Side-by-Side
• 3) Robust and battle-hardened discovery and name service
• 4) Zoning and Security
• 5) Integrated Qualification and Support
FC-NVMe

- Wicked Fast!
- Builds on 20 years of the most robust storage network experience
- Can be run side-by-side with existing SCSI-based Fibre Channel storage environments
- Inherits all the benefits of Discovery and Name Services from Fibre Channel
- Capitalizes on trusted, end-to-end Qualification and Interoperability matrices in the industry
After this Webcast

- Please rate this event – we value your feedback
- We will post a Q&A blog at http://fibrechannel.org/ with answers to all the great questions we received today
- Follow us on Twitter @FCIAnews
- Join us for our next live FCIA webcast:
 How to Use the Fibre Channel Speedmap
 April 6, 2017
 11:00 am PT

Register at https://www.brighttalk.com/webcast/14967/246353
Thank you!