Introducing FC-NVMe

The Best of Both Worlds

Craig Carlson, Chair, T11 FC-NVMe Committee, Cavium J Metz, Secretary, FCIA Board of Directors, Cisco

Agenda

- Introduction
- Crash Course on How Fibre Channel Works
- Crash Course on NVMe and NVMe over Fabrics (NVMeoF) Work
- How FC-NVMe Works
- Why Use FC-NVMe?
- Summary

Today's Presenters

J Metz FCIA Board of Directors, Cisco

Craig Carlson
FCIA Board of Directors, Cavium

What This Presentation Is

- A reminder of how Fibre Channel works
- A reminder of how NVMe over Fabrics work
- A high-level overview of Fibre Channel and NVMe, especially how they work together

What This Presentation Is Not

- A technical deep-dive on either Fibre Channel or NVMe over Fabrics
- Comprehensive (no boiling the ocean)
- A comparison between FC and other NVMe over Fabrics methods

Crash Course on Fibre Channel

What is Fibre Channel?

- A network purpose-built for storage
- A physical connection between a host and its storage
- A logical (protocol) connection between a host and its storage

Design Requirements

•Fibre Channel Storage Area Network (SAN)

- Goal: Provide one-to-one connectivity
- Transport and Services are on same layer in same devices
- Well-defined end-device relationships (initiators and targets)
- Does not tolerate packet drop requires lossless transport
- Only north-south traffic, east-west traffic mostly irrelevant

Network designs optimized for Scale and Availability

- High availability of network services provided through dual fabric architecture
- Edge/Core vs. Edge/Core/Edge
- Service deployment

Fabric topology, services and traffic flows are structured

Design Elements

- Terminology that covers components or parts of the system
- Terminology that talks about the end-to-end system

Design Elements

Host Initiator

- For FC the adapter which sits in a Host is called an HBA (Host Bus Adapter)
 - Equivalent to a NIC for Ethernet
- Where protocols such as NVMe or SCSI get encapsulated into a Fibre Channel Frame

Design Elements

Switch/Fabric

- Fabric intelligence is most often kept in the switch
- The Name Server
 - Repository of information regarding the components that make up the Fibre Channel network
 - Name Server is implemented in the Fabric as a distributed redundant database
 - Components, like HBAs, can register their characteristics with the Name Server
 - Name server knows everything that goes on in the Fabric

- Fibre Channel typically uses an Unacknowledged Datagram Service
 - Known as "Class 3"
 - Defined as a reliable datagram (connectionless) service
 - A class 3 frame will not be dropped unless an error occurs (i.e., bit error, or other unrecoverable error)

Frames, Sequences, and Exchanges

- Fibre Channel data transfer has 3 fundamental constructs
 - Frames A "packet" of data
 - Sequences A set of frames for larger data transfers
 - Exchanges An associated set of commands and responses that make up a single command

Frames

- Each unit of transmission is called a "frame"
 - A frame can be up to 2112 bytes
 - Each frame consists of a FC Header, payload, and CRC

Sequences

- Multiple frames can be bundled into a "Sequence"
 - A Sequence can be used to transfer a large amounts of data
 - possibly up to multi-megabytes (instead of 2112 bytes for a single frame)

SEQUENCE			
FRAME	FRAME	FRAME	FRAME

Exchanges

- An interaction between two Fibre Channel ports is termed an "Exchange"
 - Many protocols (including SCSI and FC-NVMe) use an Exchange as a single command/response
 - Individual frames within the same Exchange are guaranteed to be delivered inorder
 - Individual exchanges may take different routes through the fabric
 - This allows the Fabric to make efficient use of multiple paths between individual Fabric switches

*not to scale

Discovery in a FC Network

Switch/Fabric

- Handled through the FC Name Server
- Many port attributes are automatically registered to the FC Name Server (e.g., Node WWN, Port WWN, Protocol types, etc.)
 - Every Fibre Channel port and node has a hard-coded address called World Wide Name (WWN)
 - WWNN uniquely identify devices
 - WWPN uniquely identify each port in a device

Example WWN

WWN

20:00:00:45:68:01:EF:25

Example WWNs from a Dual-Ported Device

WWNN 20:00:00:45:68:01:EF:25

WWPN A 21:00:00:45:68:01:EF:25

WWPN B 22:00:00:45:68:01:EF:25

Zones/Zoning

Switch/Fabric

- Zones provide added security and allow sharing of device ports
- Zoning allows a FC Fabric to control which ports get to see each other
 - Zones can change frequently (e.g. backup)
- Zoning is implemented by the switches in a Fabric
 - Similar to ACLs in Ethernet switches
 - Central point of authority
 - Zoning information is distributed to all switches in the fabric
 - Thus all switches have the same zoning configuration
- Standardized

Fibre Channel Protocol

- Fibre Channel has layers, just like OSI and TCP
- At the top level is the Fibre Channel Protocol (FCP)
 - Integrates with upper layer protocols, such as SCSI, FICON, and NVMe

What Is FCP?

- What's the difference between FCP and "FCP"?
 - FCP is a data transfer protocol that carries other upper-level transport protocols (e.g., FICON, SCSI, NVMe)
 - Historically FCP meant SCSI FCP, but other protocols exist now
- NVMe "hooks" into FCP
 - Seamless transport of NVMe traffic
 - Allows high performance HBA's to work with FC-NVMe

Crash Course on NVMe

What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

- Non-Volatile Memory Express (NVMe)
 - Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)

 Low latency and high IOPS directattached NVM storage

What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

Non-Volatile Memory Express (NVMe)

- Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
- Low latency and high IOPS directattached NVM storage

NVMe over Fabrics (NVMe-oF)

- Built on common NVMe architecture with additional definitions to support messagebased NVMe operations
- Standardization of NVMe over a range Fabric types
 - Initial fabrics; RDMA(RoCE, iWARP, InfiniBand™) and Fibre Channel

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- In-box PCIe NVMe drivers in all major operating systems
- NVMe-oF will require specific drivers
 - FC-NVMe drivers will be provided by Fibre Channel vendors like always

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Contains the architectural elements for NVMe targets
 - NVMe Controller
 - NVM Media
 - NVMe Namespaces
 - Interfaces

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- NVMe Command Processing
- Access to NVMe Namespaces
 - Namespace ID (NSID)
 associates a Controller to
 Namespaces(s)

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Defines the mapping of NVM Media to a formatted LBA range
 - NVM Subsystem may have multiple Namespaces

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- I/O Submission and Completion Queue Pairs are aligned to Host CPU Cores
 - Independent per queue operations
- Transport type-dependent interfaces facilitate the queue operations and NVMe Command Data transfers

NVMe over Fabrics (NVMe-oF)

- NVMe is a Memory-Mapped, PCIe Model
- Fabrics is a message-based transport; no shared memory
- Fibre Channel uses capsules for both Data and Commands

Extending Queue-Pairs over a Network

- Each Host/Controller Pair have an independent set of NVMe queues
- Queue Pairs scale across Fabric
 - Maintain consistency to multiple Subsystems
 - Each controller provides a separate set of queues, versus other models where single set of queues is used for multiple controllers

FC-NVMe

Take away from this section?

Most important part

- High level understanding of how FC-NVMe works
- Understand how FCP can be used to map NVMe to Fibre Channel
- Next Section
 - Why use FC-NVMe?

FC-NVMe

Goals

- Comply with NVMe over Fabrics Spec
- High performance/low latency
- Use existing HBA and switch hardware
 - Don't want to require new ASICs to be spun to support FC-NVMe
- Fit into the existing FC infrastructure as much as possible, with very little real-time software management
 - Pass NVMe SQE and CQE entries with no or little interaction from the FC layer
- Maintain Fibre Channel metaphor for transportability
 - Name Server
 - Zoning
 - Management

Performance

- The Goal of High Performance/Low Latency
 - Means that FC–NVMe needs to use an existing hardware accelerated data transfer protocol
 - FC does not have an RDMA protocol so FC-NVMe uses FCP as the data transfer protocol
 - Currently both SCSI and FC-SB (FICON) use FCP for data transfers
 - FCP is deployed as hardware accelerated in most (if not all) HBAs
 - Like FC, FCP is a connectionless protocol
 - Any FCP based protocols provide a way of creating a "connection", or association between participating ports

FCP Mapping

 The NVMe Command/Response capsules, and for some commands, data transfer, are directly mapped into FCP Information Units (IUs)

 A NVMe I/O operation is directly mapped to a Fibre Channel Exchange

FC-NVMe Information Units (IUs)

I/O Operation

 Transactions for a particular I/O Operation are bundled into an FC Exchange

Zero Copy

- Zero-copy
 - Allows data to be sent to user application with minimal copies

- RDMA is a semantic which encourages more efficient data handling, but you don't need it to get efficiency
- FC has had zero-copy years before there was RDMA
 - Data is DMA'd straight from HBA to buffers passed to user
- Difference between RDMA and FC is the APIs
 - RDMA does a lot more to enforce a zero-copy mechanism, but it is not required to use RDMA to get zero-copy

FCP Transactions

FCP Transactions look similar to RDMA

- For Read
 - FCP_DATA from Target
- For Write
 - Transfer Ready and then DATA to Target

NVMe-oF Protocol Transactions

- NVMe-oF over RDMA protocol transactions
 - RDMA Write
 - RDMA Read with RDMA Read Response

FC-NVMe Discovery

- FC-NVMe Discovery uses both
 - FC Name Server to identify FC-NVMe ports
 - NVMe Discovery Service to disclose NVMe Subsystem information for those ports
- This dual approach allows each component to manage the area it knows about
 - FC Name Server knows all the ports on the fabric and the type(s)
 of protocols they support
 - NVMe Discovery Service knows all the particulars about NVMe Subsystems

FC-NVMe Initiator connects to FC Name Server

FC Name Server points to NVMe Discovery Controller(s)

FC-NVMe Initiator connects to NVMe Discovery Controller(s)

NVMe Discovery Controller(s) identify available NVMe Subsystems

FC-NVMe Initiator connects to NVMe Subsystem(s) to begin data transfers

Zoning and Management

- Of course, FC-NVMe also works with
 - FC Zoning
 - FC Management Server and other FC Services

Demonstration

FC-NVMe Demonstration

- Multiple FC-NVMe Demonstrations were presented at the 2016 Flash Memory Summit
 - Multiple Vendors attending
 - Live FC-NVMe traffic between an FC-NVMe Host/Initiator to a FC-NVMe Subsystem/Target

Why Use FC-NVMe?

 1) Dedicated Storage Network

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service
- 4) Zoning and Security

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service
- 4) Zoning and Security
- 5) Integrated
 Qualification and
 Support

Summary

FC-NVMe

- Wicked Fast!
- Builds on 20 years of the most robust storage network experience
- Can be run side-by-side with existing SCSIbased Fibre Channel storage environments
- Inherits all the benefits of Discovery and Name Services from Fibre Channel
- Capitalizes on trusted, end-to-end
 Qualification and Interoperability matrices in the industry

After this Webcast

- Please rate this event we value your feedback
- We will post a Q&A blog at http://fibrechannel.org/ with answers to all the great questions we received today
- Follow us on Twitter @FCIAnews
- Join us for our next live FCIA webcast:

How to Use the Fibre Channel Speedmap

April 6, 2017

11:00 am PT

Register at https://www.brighttalk.com/webcast/14967/246353

Thank you!

