Expand the Power of Flash with FC-NVMe

Live Webcast November 1, 2018 9:00 am PT

Today's Panelists

Mark Jones
Director, Technical Marketing and
Performance

Broadcom

Marcus Thordal

Principal Solution Architect

Broadcom

Rupin Mohan

Director, R&D, Head of

Development, CTO SAN

HPE

Craig Carlson
Senior Technologist
Marvell Semiconductor

Dennis Martin
Senior Analyst
Principled Technologies

David Rodgers
Sr/ Product Marketing Manager
Teledyne LeCroy

Fibre Channel Industry Association

- Fibre Channel Legacy of Interoperability, reliability and robustness
 - Products have been shipping in volume for more than 20 years –
 120M ports shipped, 43M in current use.
- Key Factors to Fibre Channel's success
 - Industry-wide participation in FC standards INCITS T11
 - ~Avg of Two Plugfests per year (39 total) that ensure vendors conform to industry standards

FCIA FC-NVMe Plugfest

- July 23, 2018 4th FC-NVMe plugfest
 - 13 Companies/products tested
 - HBAs, Switches, Storage Arrays, Analyzers/Jammers
 - Key Accomplishments
 - Testing of End-end commercial available products
 - Multi vendor interoperability, standards conformance
 - Data Integrity validation over switch multi-hop fabrics
 - Error injection to validate correct FC-NVMe and FC recovery
 - Concurrent FC-NVMe + FC over same Initiator, fabric, target ports
 - "Big Build" overnight stress testing of all of the above.

How to Participate with the FCIA

- Https://fibrechannel.org
 - 2018 FC Solutions Guide
 - FC Roadmaps
 - Plugfest Information
 - FC Education links
- FC Education
 - Library of on-demand webcasts
 - Available at FCIA BrightTALK channel https://www.brighttalk.com/channel/14967
- Social Media
 - LinkedIn, Twitter @FCIAnews

Agenda

- Marcus Thordal The New Normal in Storage Latency
- Rupin Mohan NVMe: A New Language for Storage
- Craig Carlson FC-NVMe Status and Updates
- Dennis Martin FC-NVMe Test Results
- David Rodgers Fibre Channel Test and Measurement
- Q&A

The New Normal in Storage Latency

Marcus Thordal
Principal Solution Architect
Broadcom

How Flash and NVMe are Changing Storage Latency

- Many elements in networked storage latency
 - Flash and NVMe change which elements matter
- In HDD era, arrays could use cache and spindle count
 - Array acceleration hid SW feature overhead
 - Availability "zero cost" in performance
- Fast SSDs make protocol, feature costs visible
 - Networked storage still has benefits, of course
 - Some applications may prefer speed over features

Elements in Application Storage Latency

Flash and NVMe are Changing SAN Storage Latency

In HDD Era:

Very little incentive to use raw media with networked storage

Media Eras →	Fast HDD (estimate)	SCSI Flash (estimate)	FC-NVMe (anticipated)	
Server IO Stack	40 μs	30 μs	7 μs	
SAN (no queuing)	*6 µs	3 μs	3 μs	
Avg Services	250 μs	150 μs	20 μs	
Avg Acceleration	-200 μs	0 μs	0 μs	
Media	3 ms	50 μs	10 μs	
Raw Access Total	3.0 ms	83 μs	20 μs	
Services Total	3.1 ms	233 μs	40 μs	

In "anticipated" NVMe SSD Era:

Use of raw media may be justified... but many applications may want both!

Use Case:

Concurrent Enterprise / Raw Media Storage

Analytics on Active DB

- Using sensitive data for ML is an effective mechanism to:
 - Increase revenue
 - Build customer loyalty
- ML is data intensive, and want results soon as possible:
 - But active DB needs protection (adds latency)
 - Hammering active DB with ML slows both down
 - What do do?
- Separate the problem:
 - Protect DB master on full-featured volume (as now)
 - Regularly snapshot / Clone the DB to Raw Media
 - Use Raw Media reference copy for ML
 - Do both on the same infrastructure you use today

NVMe: A New Language for Storage

Rupin Mohan
Director R&D, CTO SAN
HPE Storage

NVMe – Technology Disruption

Traditional Storage Arrays

- 1. Storage Controller runs SCSI
- 2. Front end FC/iSCSI
- Backend SAS/SATA
- 4. Software Feature Rich

Hybrid Storage Arrays

- Storage Controller runs SCSI with upgraded back end – Controller does SCSI-NVMe translation with NVMe drives in the backend
- 3D Cross Point for Metadata stores on NVMe stack
- 3. Front end, FC-NVMe
- 4. Software Feature Rich

NVMe Storage Arrays

- Storage Controller only runs NVMe
- Backend NVMe Drives (PCIe, NVMe over Ethernet/Infiniband)
- Frontend NVMe (FC-NVMe. NVMe over Ethernet)
- 4. Software Features low

NVMe over Fabrics Use Cases

NVMe-oF Deployment (FC)

NVMe storage attached in the backend

NVMe end to end using FC

NVMe-oF Deployment (Ethernet)

RDMA - RocEv1, RocEv2 and iWARP (Infiniband not included in pictures)

The Landscape Today....

Protocol	Latency	Scalable	Performance	Enterprise Footprint
Fibre Channel	Lower	Yes	High	Reliable / Mature Storage Fabric
RoCEv2	Lowest	Yes	Higher	Negligible
iWARP(Intel)	Medium	Yes	Medium	Negligible
TCP	High	Yes	Medium	Medium with iSCSI
InfiniBand	Lowest	Limited	High	None

FC-NVMe Status and Update

Craig W. Carlson

Marvell Semiconductor

FC-NVMe is real

- FC-NVMe (Fibre Channel over NVMe)
 - First revision of standard completed in 2016
 - Products are now available
 - Based on existing trusted hardware/software platforms

Future development

- FC-NVMe-2 under development now
 - Major new feature is Enhanced Error Recovery
 - Allows for transport level recovery of lost or corrupted commands
 - Occurrence of this is rare, but not impossible
 - Adds additional reliability to already reliable FC SANs

Fibre Channel

- Ratification of 64GFC serial and 256GFC parallel is under way
- Work started on 128GFC serial with 512GFC parallel following

FCIA Roadmap

Product Naming	Throughput (Mbytes/s)	Line Rate (Gbaud)	T11 Specification Technically Complete (Year)*	Market Availability (Year)*
1GFC	200	1.0625	1996	1997
2GFC	400	2.125	2000	2001
4GFC	800	4.25	2003	2005
8GFC	1,600	8.5	2006	2008
16GFC	3,200	14.025	2009	2011
32GFC	6,400	28.05	2013	2016
128GFC	25,600	4X28.05	2014	2016
64GFC	12,800	28.9 PAM-4 (57.8Gb/s)	2017	2019
256GFC	51,200	4X28.9 PAM-4 (4X57.8Gb/s)	2017	2019
128GFC	25,600	TBD	2020	Market Demand
256GFC	51,200	TBD	2023	Market Demand
512GFC	102,400	TBD	2026	Market Demand
1TFC	204,800	TBD	2029	Market Demand

FC-NVMe Test Results

Dennis Martin
Senior Analyst, Principled Technologies

About Demartek

 On September 17, 2018, Demartek was acquired by Principled Technologies

Combined companies have larger lab, graphics and video production

capabilities

• We prefer to run real-world applications to test servers and storage solutions (databases, Hadoop, VMware, etc.) We are pleased to announce that Principled Technologies has acquired Demartek.

https://www.demartek.com/Demartek_Acquired_by_Principled_Technologies_2018-09.html

Storage Interface Comparison

- Free reference page on demartek.com
 - https://www.demartek.com/Storage-Interface-Comparison/
 - Search for "storage interface comparison" in your favorite search engine
- Popular page includes interactive PDF for download
- Provides comparison of storage interfaces
 - FC, FCoE, IB, iSCSI, NVMe, PCIe, SAS, SATA, Thunderbolt, USB
 - Transfer rates, encoding schemes, history, roadmaps, cabling, connectors
- We're not a product vendor we use these technologies in our lab

FC-SCSI vs. FC-NVMe

May 2018 Demartek Evaluation:
 Performance Benefits of
 NVMe[™] over Fibre Channel – A
 New, Parallel, Efficient Protocol

https://www.demartek.com/ModernSAN/

May 2018

⊗ Demartek

Performance Benefits of NVMe™ over Fibre Channel – A New, Parallel, Efficient Protocol

NVMe[™] over Fibre Channel delivered **58% higher IOPS** and **34% lower latency** than SCSI FCP. (What's not to like?)

Executive Summary

NetApp's ONTAP 9.4 is the first generally available enterprise storage offering enabling a complete NVMe™ over Fibre Channel (NVMe/FC) solution. NVMe/FC solutions are based on the recent T11/INCITS committee FC-NVMe block storage standard, which specifies how to extend the NVMe command set over Fibre Channel in accordance with the NVMe over Fabrics™ (NVMe-oF™) guidelines produced by the NVM Express™ organization.

Fibre Channel is **purpose-built for storage** devices and systems and is the de facto standard for storage area networking (SAN) in enterprise datacenters. Fibre Channel operates in a lossless fashion with hardware offload Fibre Channel adapters, with hardware-based congestion management, providing a reliable, credit-based flow control and delivery mechanism, meeting the technical requirements for NVMe/FC.

Today's Fibre Channel adapters have the added benefit of being able to run traditional Fibre Channel Protocol (SCSI FCP) that uses the SCSI command set concurrently with the NVMe over Fibre Channel command set in the same adapter, the same Fibre Channel Network, and the same Enterprise All Flash Arrays (AFAs). The NetApp AFF A700s is the first array to support both SCSI FCP and NVMe/FC concurrently on the same port. This provides investment protection for existing FC adapters while offering the performance benefits of NVMe/FC with a simple software upgrade. Modern Fibre Channel switches and host bus adapters (HBAs) already support both traditional SCSI FCP and NVMe/FC concurrently.

For this test report, Demartek worked with NetApp and Broadcom (Brocade and Emulex divisions) to

demonstrate the benefits of NVMe over Fibre Channel on the NetApp AFF A700s, Emulex Gen 6 Fibre Channel Adapters, and Brocade Gen 6 Fibre Channel SAN switches

Key Findings and Conclusions

- NVMe/FC enables new SAN workloads: Big data analytics, Internet of Things (IoT) and A.I. / deep learning will all benefit from the faster performance and lower latency of NVMe/FC.
- > NVMe/FC accelerates existing workloads: Enterprise applications such as Oracle, SAP, Microsoft SQL Server and others can immediately take advantage of NVMe/FC performance benefits.
- > Test results: in our tests, we observed up to 58% higher IOPS for NVMe/FC compared to SCSI FCP on the same hardware. We also observed minimum differences, depending on the tests, of 11% to 34% lower latency with NVMe/FC
- > NVMe/FC is easy to adopt: All of the performance gains we observed were made possible by a software upgrade.
- > NVMe/FC protects your investment: The benefits we observed were with existing hardware that supports 32GFC.
- > NVMe/FC Datacenter consolidation: More work can be completed in the same hardware footprint with increased IOPS density.

Demartek

demartelccom

© 2018 Demartek

The Test

- Comparison of FC-SCSI to FC-NVMe
- Same hardware, different protocol

Results: Random Read 4KB

Zoom-in: RR 4KB

Oracle 80-20 8KB

Test & Measurement in Fibre Channel From Inception to Support

Protocol Awareness is Required from Initial Phy Development for Successful NVMe Application Support

David J. Rodgers

High-Speed Fabric Designs and Protocol Analysis

Basic Premise:

Mission Critical Storage demands, i.e. NVMe/oF, are fueling the exponential growth of Fibre Channel speeds, protocols, port counts and densities. The challenge to meet the demands of users and applications requires adaptation and evolution of test and measurement tools and practices.

Specific to Phy Layer Designs, link interfaces have evolved to include improved communications schemes and adapted corresponding high-speed transmitter training and equalization practices.

The impact on hardware designs requires protocol awareness beginning with initial design, through validation, and in the field after deployment.

Universal T&M Considerations

- Common to all stages of Fibre Channel Fabric Development, Deployment, and Support for NVMe
 - What issue(s) are we trying to understand and correct?
 - When and How does the issue manifest?
 - Is the issue reproducible?
 - Can root cause be definitively determined?
 - What are the curative measures?
 - Can you test the 'fix'?
 - What are the Cost considerations to vendors, customers?

Fibre Channel T&M Today

- The physical communications "Channel" must be stable
 - Minor Imperfections, once considered 'routine' and unremarkable are no longer "minor"
- Vendor Interoperability is required!
 - From Switch to HBA to Interconnect options,
 Vendor offerings must work together
- Specification Conformance
 - FC Physical/Communications Layer
 - NVMe iterations
- Line-rate Capture/Analysis Tools Needed
 - The ability to use a "neutral" oberver

Fibre Channel T&M Future

- New Tools and Processes for PHY Testing
 - High Speed Real Time and/or Sampling Scopes
 - Up to 100GHz Today!
- Specialized Traffic Generation Capabilities Supporting:
 - Physical Coding Sublayer 8b/10b, 64b/66b, (256b/257b) encoding
 - Speed-Negotiation, Transmitter Training Sequences
- New Line Rate analysis capabilities supporting:
 - "Pass Through" tapping
 - Bit-level Capture
- The "Channel" must be "smart"
 - Protocol is inherent in the physical layer!

Thank You!

Q&A

Fibrechannel.org

