Fibre Channel Outlook 2021 and Beyond

Live Webcast December 3, 2020 10:00 AM PT/1:00 PM ET

CHANNEL INDUSTRY ASSOCIATION

About the Presenters

Mark Jones **Director Technical** Marketing, Broadcom **FCIA Board of Directors**

Rupin Mohan Director R&D, CTO [SAN] HPE **FCIA Board of Directors**

Casey Quillin Founder and Principal Analyst **Quillin Research**

About the Fibre Channel Industry Association (FCIA)

25+ Years

Promoting Fibre Channel Technology

Industry Leading

Member Companies

142M+ FC Ports Shipped Since 2001

Key Tenets of Fibre Channel

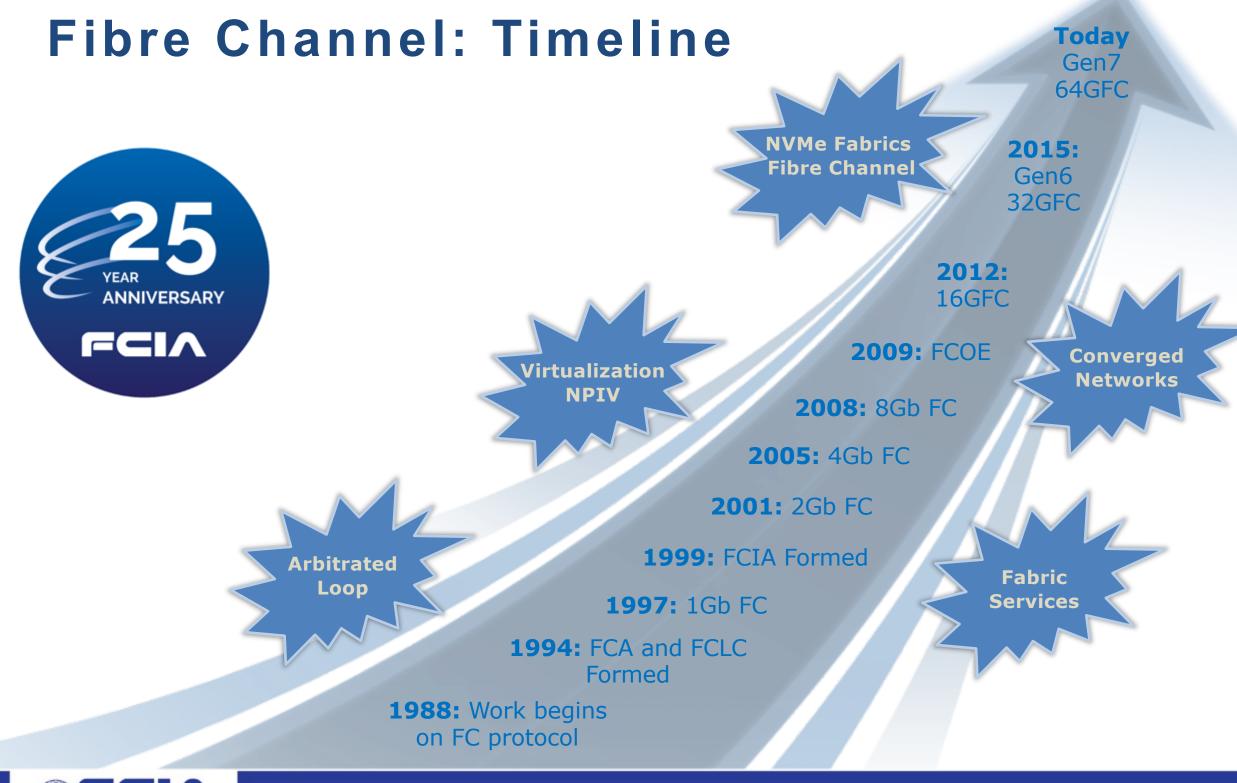
- Purpose-built as network fabric for storage and standardized in 1994, Fibre Channel (FC) is a complete networking solution, defining both the physical network infrastructure and the data transport protocols. Features include:
 - Lossless, congestion free systems—A credit-based flow control system ensures delivery of data as fast as the destination buffer can receive, without dropping frames or losing data.
 Multiple upper-layer protocols—Fibre Channel is transparent and autonomous to the
 - Multiple upper-layer protocols—Fibre Channel is transparent and autono protocol mapped over it, including SCSI, TCP/IP, ESCON, and NVMe.
 - Multiple topologies—Fibre Channel supports point-to-point (2 ports) and switched fabric (224 ports) topologies.
 - Multiple speeds—Products are available supporting 8GFC, 16GFC, and 32GFC today.
 - Security—Communication can be protected with access controls (port binding, zoning, and LUN masking), authentication, and encryption.
 - Resiliency—Fibre Channel supports end-to-end and device-to-device flow control, multipathing, routing, and other features that provide load balancing, the ability to scale, selfhealing, and rolling upgrades.

GFC today. nding, zoning, and

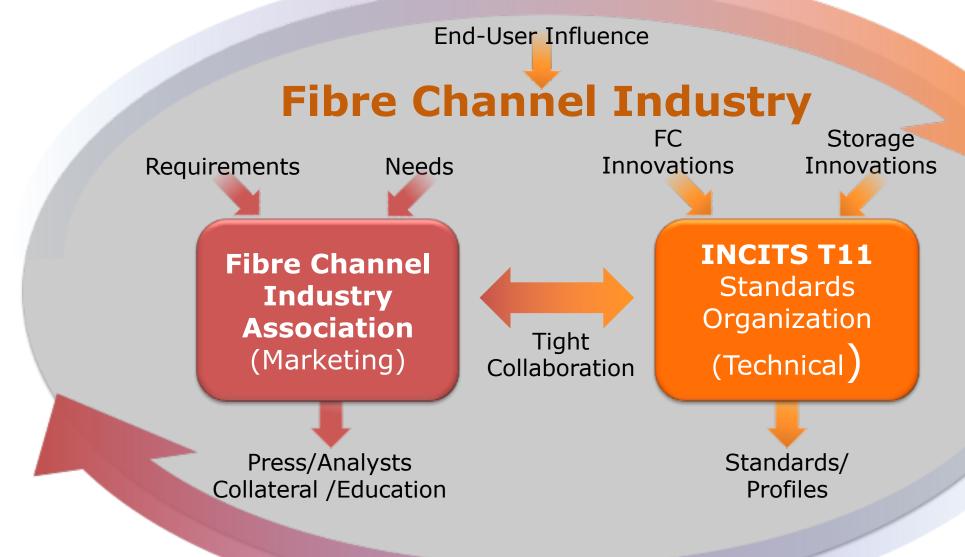
Agenda

- Fibre Channel Industry Overview Mark Jones
- Market Landscape Casey Quillin
- Fibre Channel Roadmap Craig Carlson
- Automation & Orchestration Rupin Mohan

Fibre Channel Industry Overview


Mark Jones

FIBRE CHANNEL INDUSTRY ASSOCIATION



How the FC Industry Innovates

In 2020 Fibre Channel is the Premier Storage Transport

FC is the most trusted transport for enterprise storage

Nearly all datacenter class storage arrays sell with FC

FC is a premium offering

- Not the cheapest you get what you pay for (Performance, Reliability, Data Safety)
- Most tested and supported of storage transports

FC has a healthy ecosystem

- Strong T11 standards future development schedule continuous innovation!
- Strong participation from the leaders of datacenter technology
- FCIA leadership for industry direction

FC has huge installed base of loyal customers

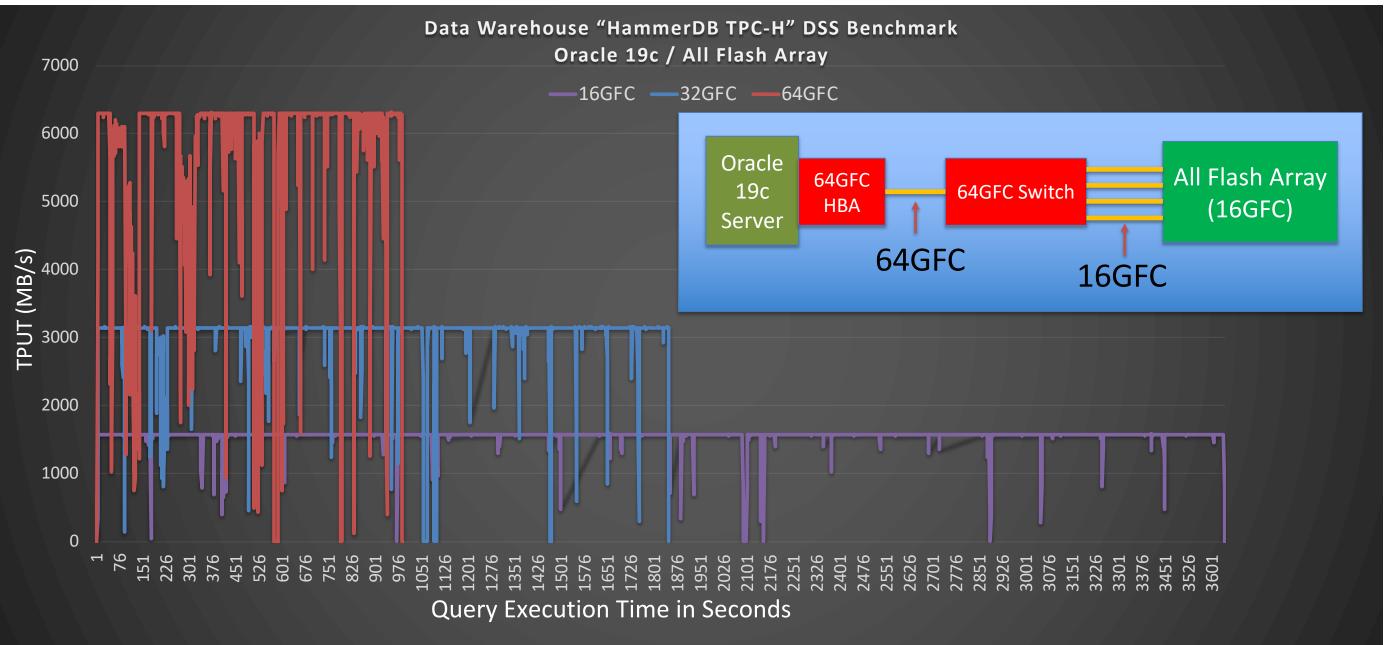
- Repeat customers over 25 years and seven generations of re-investment
- 142M ports sold, 37M in use today!

NVMe® over Fibre Channel

- Strong Industry-wide development support
 - 2014 T11 began work on FC-NVMe
 - Industry milestones: Demos, Plugfests, first product shipments
 - 2020 FC-NVMe-2 complete
- 2020: FC Leading Fully Supported NVMe-oF[™] Transport Solution
 - FC-NVMe solutions shipping from all major FC component/array storage vendors
 - Support for all major operating systems
 - Significant application performance improvements over traditional SCSI
- Future of NVMe/FC
 - Continued performance improvements as OS's refine NVMe-oF transport
 - Broadened vendor and OS adoption
 - NVMe/FC to be springboard for future FC technology advancements: Stay tuned!

64GFC Gen7 Gets Real in 2021 2016 32GFC vs 2021 64GFC

	Users The Need for Higher Performance Data Access	Servers The capacity to process and use the performance	St The abilit fulfill da highe
2016 - 32GFC	 DB - Increase adoption of DB data warehousing VM - Storage migration a new thing VM - VDI fairly new 	 PCle gen 3 x8 = 2P 32G(6.6G) Memory BW/density increase 150% 	 All Flash traction - performa config siz
2021 – 64GFC	 WW Data grew by 4x DB Data Warehousing to double in 5 years DB – BI use exploding DB – AI has increased DB Query exponentially DB – IT Governance means regional replication of data 	 PCle gen 4 x8 = 2P 64G(13.2G) Memory BW/density (1.6x more BW, 2.6x greater capacity) 	 All Flash common NVMe dr SSDs Cost of fl Performatincreasin SCM grow server/st


Storage lity for arrays to ata requests at er data rates

arrays gaining - capable of high ance in modest izes

now nplace rives replacing

flash dropping nance of Flash ng owth in storage

64GFC Accelerates Application Performance **Oracle DB Data Warehousing Query time/FC Link Speed**

The Need for Fibre Channel Education

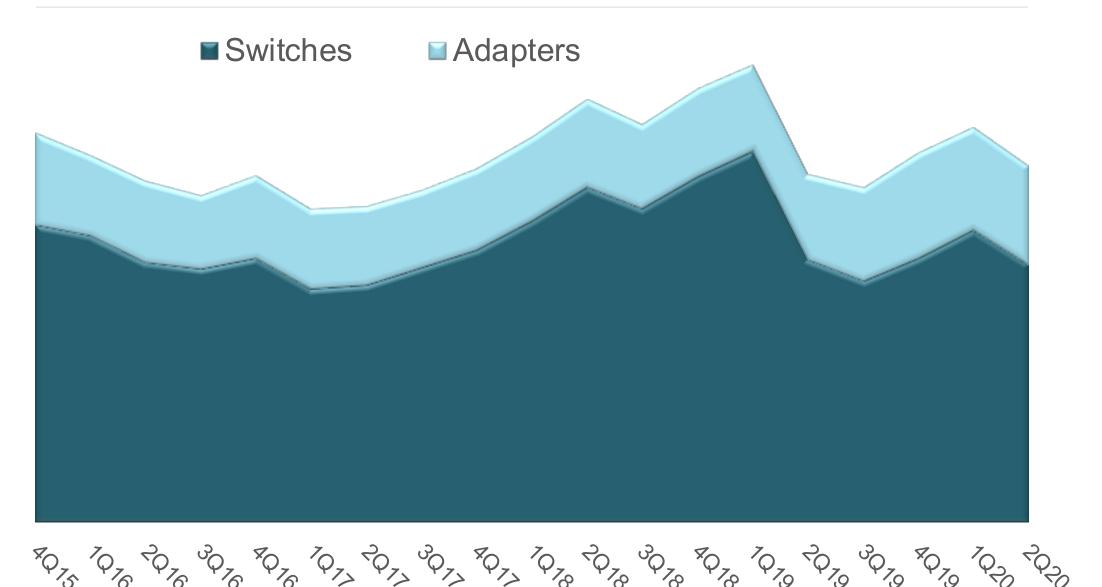
- **Changes in IT Education Trends:**
 - Fewer specialists more generalists
 - Survey results^{*}: 62% of new IT positions are being filled by generalists
 - Seasoned FC storage/SAN specialists are entering retirement age
- FCIA Education Initiative
 - Bi-monthly BrightTALK Expert webinars: https://www.brighttalk.com/channel/14967/
 - FCIA YouTube Channel: https://www.youtube.com/channel/UCeSb00940t-RfZSDg2ykRBA
 - YouTube Playlists: Basics, Fibre Channel Expert Courses, FC-NVMe
 - www.Fibrechannel.org/fcia-blog

*ESG storage trend survey 62% of new IT positions are being filled by generalists

Market Landscape

Casey Quillin

FIBRE CHANNEL INDUSTRY ASSOCIATION

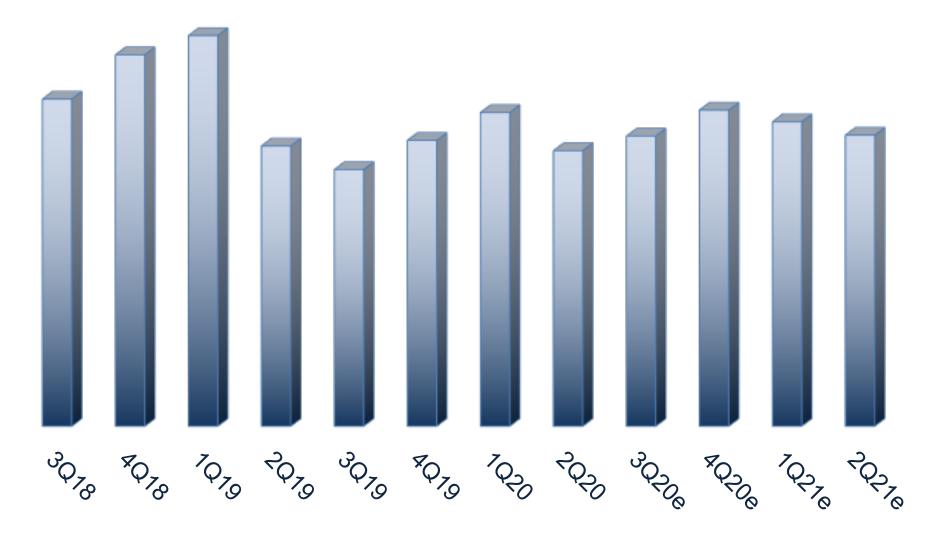

Total FC SAN - Revenue

<u>2Q20</u>

Total SAN Market +2% Y/Y

Adapter Revenue +15% Y/Y

Switch Revenue -2% Y/Y

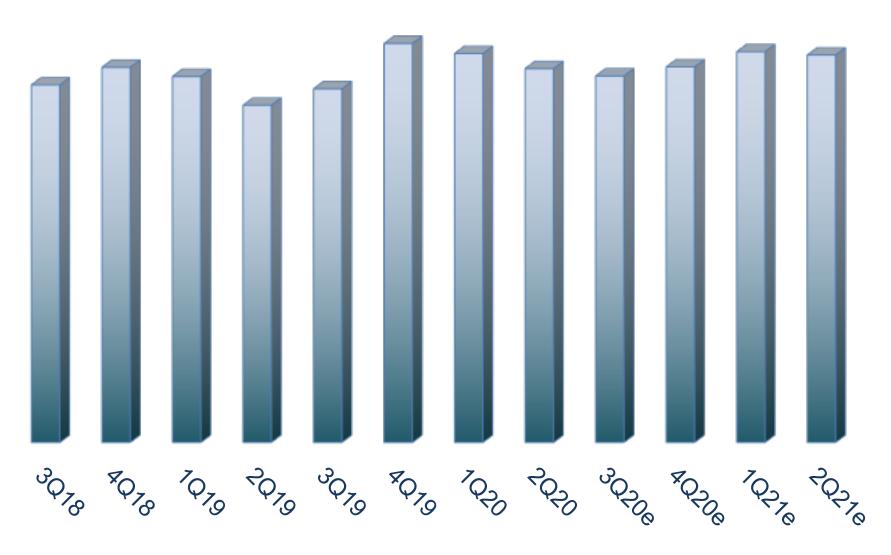


FC Switches – Port Shipments

2Q20

Port Shipments

Down low-single-digit Y/Y Down low-double-digit Q/Q



FC Adapters – Port Shipments

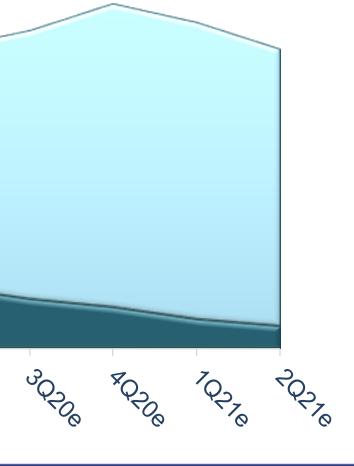
<u>2Q20</u>

Port Shipments

Up low-single-digit Y/Y Down mid-single-digit Q/Q

MARKET TRENDS

Flash Arrays


NVMe

FC for Mission Critical Storage

FC Switches - Revenue by Speed

■ 16 Gbps Fibre Channel ■>=32 Gbps Fibre Channel × 079 SO70

Fibre Channel Roadmap

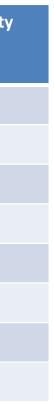
Craig Carlson

FIBRE CHANNEL INDUSTRY ASSOCIATION

Roadmap at a glance

Fibre channel speeds

Product Naming	Throughput (Mbytes/s)*	Line Rate (Gbaud)	T11 Specification Technically Complete (Year) ⁺	Market Availability (Year) [†]
8GFC	1,600	8.5 NRZ	2006	2008
16GFC	3,200	14.025 NRZ	2009	2011
32GFC	6,400	28.05 NRZ	2013	2016
64GFC	12,800	28.9 PAM-4	2017	2020
128GFC	24,850	56.1 PAM-4	2021	2024
256GFC	TBD	TBD	2025	Market Demand
512GFC	TBD	TBD	2029	Market Demand
1TFC	TBD	TBD	2033	Market Demand

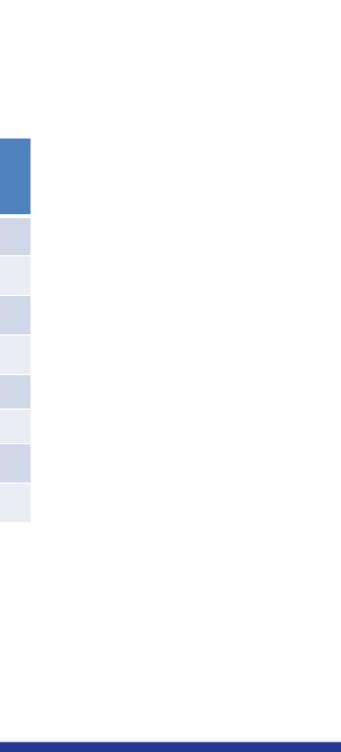

"FC" used throughout all applications for Fibre Channel infrastructure and devices, including edge and ISL interconnects. Each speed maintains backward compatibility at least two previous generations (I.e., 32GFC backward compatible to 16GFC and 8GFC)

*These numbers are representative throughput values for the line rate and are payload dependent

+ Dates: Future dates estimated

FC

ISL Speeds


	Product Naming	Throughput (MBytes/s)*	Line Rate (Gbaud) [†]	Standard Technically Complete (Year) ^{‡§}	Market Availability (Year) [‡]
ISL (Inter-Switch Link)	10GFC	2,400	10.52 NRZ	2003	2009
	40GFCoE	9,600	4 X10.3125 NRZ	2010	2013
	100GFCoE	24,000	4X25.78125 NRZ	2010	2017
	128GFC	25,600	4X28.05 NRZ	2014	2016
	200GFCoE	48,000	4X26.5625 PAM-4	2018	2020
	256GFC	51,200	4X28.9 PAM-4	2018	2020
	400GFCoE	96,000	8X26.5625 PAM-4	2020	Market Demand
	1TFCoE	TBD	TBD	TBD	Market Demand

ISLs are usually multi-lane interconnects used for non-edge, core connections, and other high speed applications demanding maximum bandwidth.

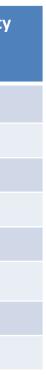
ISL's utilize high bit-rates to accommodate the funneling of edge connections. Some ISL solutions are vendor-proprietary.

- *These numbers are representative throughput values for the line rate and are payload dependent
- ⁺ Equivalent Line Rate: Rates listed are equivalent data rates for serial stream methodologies.
- **‡** Dates: Future dates estimated
- § FCoE standard completion date is the completion of the Ethernet standard

FCoE Speeds

Product Naming	Throughput (MBytes/s)*	Line Rate (Gbaud) ⁺	IEEE Standard Complete (Year) [‡]	Market Availability (Year) [‡]
10GFCoE	2,400	10.3125 NRZ	2002	2008
25GFCoE	6,000	25.78125 NRZ	2016	Market Demand
40GFCoE	9,600	4X10.3125 NRZ	2010	2013
50GFC0E	12,000	2x25.78125 NRZ	2016	Market Demand
50GFCoE	12,000	26.5625 PAM-4	2018	Market Demand
100GFCoE	24,000	4X25.78125 NRZ	2010	2017
200GFCoE	48,000	4X26.5625 PAM-4	2018	Market Demand
400GFCoE	96,000	8X26.5625 PAM-4	2020	Market Demand

Fibre Channel over Ethernet tunnels FC through Ethernet. 10GFCoE was not available until after FC-BB-5, the FCoE protocol standard, was completed in 2007. For compatibility, all 10GFCoE FCFs and CNAs are expected to use SFP+ devices, allowing the use of all standard and non-standard optical technologies and additionally allowing the use of direct connect cables using the SFP+ electrical interface. FCoE ports otherwise follow Ethernet standards and compatibility guidelines.


*These numbers are representative throughput values for the line rate and are payload dependent

⁺ Equivalent Line Rate: Rates listed are equivalent data rates for serial stream methodologies.

‡ Dates: Future dates estimated

FCoE

The Roadmap

- Goal is to double every speed increase (every 3 to 4 years)
 - Now working on 128GFC
- Speed increases are always backwards compatible with at least the previous 2 speeds
- Goal remains 100m reach for multi-mode
- Goal to decrease Latency
- Add more value-ad features
 - Automation and orchestration

at least the

Automation & Orchestration

Rupin Mohan



FIBRE CHANNEL INDUSTRY ASSOCIATION

SAN Automation – Enabling Deployment & Managing SAN's Simple

Fabric Notifications

FPIN Type Fabric Performance Impact Notification	What it does
Congestion Notification (FPIN-CN)	Notifies the port that is causing congestion that it is causing congestion.
Link Integrity (FPIN-LI)	Notifies the server port that the link it is connected to is 'sick but not dead.'
Peer Notification (FPIN-PN)	When a FPIN-CN is sent to the server causing congestion, a Peer Notification is sent to all of the other ports in the zone.
Delivery Notification (FPIN-DN)	Delivery Notification - Best example is if a switch drops a frame due to egress hold time expiring (220ms).
Signals	Instead of using ELS, in Gen 7 ASICs providing congestion notifications at the hardware level. In essence, congestion signals look like rapid FPIN-CNs.

The details are in FC-FS-6 (Congestion Signal) and FC-LS-5 (EDC, RDF, and FPIN ELSs).

Target Driven Peer Zoning

Feature	What it does?
Peer Zoning	A Peer Zone is a Zone that allows a "Principal" member to communicate with "Peer" member Peer members to communicate among themselves. Peer Zone identifies a Principal member Zone Attribute as defined in the FC-GS-x standard.
Target Driven Peer Zoning	When a target device defines/creates and manages Peer Zones using in-band FC-CT comma table), then it is called Target Driven Peer Zoning (TDPZ). Peer Zones can be defined/created as well.
AAPZ	Add/Replace Active Peer Zone (AAPZ) Operation A Target that supports TDPZ sends this command (along with the right attributes) to the Fabric Zo in the attached switch) to create a new Peer Zone or update an existing Peer Zone with the same
RAPZ	Remove Active Peer Zone (RAPZ) Operation A Target that supports TDPZ sends this command to the Fabric Zone Server (that resides in the at remove an existing Peer Zone that matches with the Zone Name specified in the command paylo
GAPZ	Get Active Peer Zone (GAPZ) Operation A Target that supports TDPZ sends this command to the Fabric Zone Server (that resides in the at retrieve an existing Peer Zone. The Fabric Zone Server shall return the Peer Zone definition in the the specified Zone Name.

Peer Zoning and details of AAPZ/RAPZ/GAPZ are described in FC-GS-x standard.

bers, and does not allow ber through the Peer

ands (shown in this ed by other mechanisms

Zone Server (that resides e name.

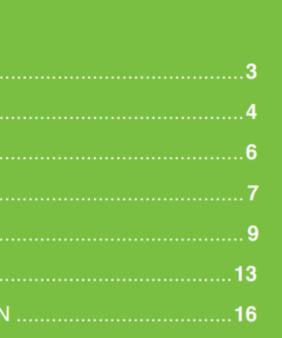
attached switch) to oad.

attached switch) to e Active Zone Set having

Fibre Channel 2020 Solutions Guide

FIBRE CHANNEL INDUSTRY ASSOCIATION

SOLUTIONS GUIDE 2020


TABLE OF CONTENTS

Foreword FCIA's President Introduction The Benefits of NVMe[™] & NVMe-oF[™]6 The 2020 Fibre Channel Roadmap7 Fibre Channel Self-Healing Networks9 The Need for Fibre Channel Standards13 Fibre Channel and the Autonomous SAN16

https://fibrechannel.org/fibre-channel-solution-guide-2020/

After this Webcast

- Please rate this event we value your feedback
- We will post a Q&A blog at http://fibrechannel.org/ with answers to the questions we received today
- Follow us on Twitter @FCIAnews for updates on future FCIA webcasts
- Visit our library of on-demand webcasts at <u>http://fibrechannel.org/webcasts/</u> to learn about:
 - Fibre Channel Fundamentals
 - FC-NVMe
 - Long Distance Fibre Channel
 - Fibre Channel Speedmap
 - FCIP (Extension): Data Protection and Business Continuity
 - Fibre Channel Performance
 - FICON
 - Fibre Channel Cabling
 - 64GFC
 - FC Zoning Basics
 - Fibre Channel Standards

Thank You

FIBRE CHANNEL INDUSTRY ASSOCIATION

